Thermodynamical averages for the Ising model and spectral invariants of Toeplitz matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 401-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive a general formula giving a representation of the partition function of the one-dimensional Ising model of a system of $N$ particles in the form of an explicitly defined functional of the spectral invariants of finite submatrices of a certain infinite Toeplitz matrix. We obtain an asymptotic representation of the partition function for large $N$, which can be a base for explicitly calculating some thermodynamic averages, for example, the specific free energy, in the case of a general translation-invariant spin interaction (not necessarily only between nearest neighbors). We estimate the partition function from above and below in the plane of the complex variable $\beta$ $(\beta$ is the inverse temperature) and consider the conditions under which these estimates are asymptotically equivalent as $N\to\infty$.
Keywords: Ising model, statistical model, specific free energy, asymptotics, Toeplitz matrix.
@article{TMF_2020_203_3_a5,
     author = {V. M. Kaplitskii},
     title = {Thermodynamical averages for {the~Ising} model and spectral invariants of {Toeplitz} matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {401--416},
     year = {2020},
     volume = {203},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a5/}
}
TY  - JOUR
AU  - V. M. Kaplitskii
TI  - Thermodynamical averages for the Ising model and spectral invariants of Toeplitz matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 401
EP  - 416
VL  - 203
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a5/
LA  - ru
ID  - TMF_2020_203_3_a5
ER  - 
%0 Journal Article
%A V. M. Kaplitskii
%T Thermodynamical averages for the Ising model and spectral invariants of Toeplitz matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 401-416
%V 203
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a5/
%G ru
%F TMF_2020_203_3_a5
V. M. Kaplitskii. Thermodynamical averages for the Ising model and spectral invariants of Toeplitz matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 401-416. http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a5/

[1] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl

[2] F. A. Berezin, “Ploskaya model Izinga”, UMN, 24:3(147) (1969), 3–22 | DOI | MR

[3] N. M. Bogolyubov, K. L. Malyshev, “Integriruemye modeli i kombinatorika”, UMN, 70:5(425) (2015), 3–74 | DOI | DOI | MR | Zbl

[4] N. M. Bogolyubov, V. E. Korepin, “Zavisimost korrelyatsionnogo radiusa ot temperatury v odnomernom boze-gaze”, TMF, 64:1 (1985), 92–102 | DOI | MR

[5] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[6] A. A. Batalshchikov, S. M. Grudsky, V. A. Stukopin, “Asymptotics of eigenvalues of symmetric Toeplitz band matrices”, Linear Alg. Appl., 469 (2015), 464–486 | DOI | MR | Zbl