@article{TMF_2020_203_3_a4,
author = {H. A. Yamani and Z. Mouayn},
title = {Properties of shape-invariant tridiagonal {Hamiltonians}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {380--400},
year = {2020},
volume = {203},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a4/}
}
H. A. Yamani; Z. Mouayn. Properties of shape-invariant tridiagonal Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 380-400. http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a4/
[1] L. E. Gendenshtein, “Nakhozhdenie tochnykh spektrov uravneniya Shredingera s pomoschyu supersimmetrii”, Pisma v ZhETF, 38:6 (1983), 299–302
[2] R. Dutt, A. Khare, U. P. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials”, Amer. J. Phys., 56:2 (1988), 163–168 | DOI
[3] A. A. Andrianov, N. V. Borisov, M. V. Ioffe, M. I. Eides, “Supersimmetrichnaya mekhanika: novyi vzglyad na ekvivalentnost kvantovykh sistem”, TMF, 61:1 (1984), 17–28 | DOI | MR
[4] A. A. Andrianov, N. V. Borisov, M. V. Ioffe, “The factorization method and quantum systems with equivalent energy spectra”, Phys. Lett. A, 105:1–2 (1984), 19–22 | DOI | MR
[5] F. Cooper, A. Khare, U. P. Sukhatme, “Supersymmetry and quantum mechanics”, Phys. Rep., 251:5–6 (1995), 267–385, arXiv: hep-th/9405029 | DOI | MR
[6] W. H. Miller, Jr., “Lie theory and difference equations. I”, J. Math. Anal. Appl., 28:2 (1969), 383–399 | DOI | MR
[7] V. Spiridonov, L. Vinet, A. Zhedanov, “Difference Schrödinger operators with linear and exponential discrete spectra”, Lett. Math. Phys., 29:1 (1993), 63–73 | DOI | MR
[8] F. Cooper, A. Khare, U. P. Sukhtame, Supersymmetry in Quantum Mechanics, World Sci., Singapore, 2001 | DOI | MR
[9] M. S. Swanson, A Concise Introduction to Quantum Mechanics, Morgan and Claypool Publ., San Rafael, CA, 2018 | DOI
[10] H. A. Yamani, Z. Mouayn, “Supersymmetry of tridiagonal Hamiltonians”, J. Phys. A: Math. Theor., 47:26 (2014), 265203, 16 pp. | DOI | MR
[11] H. A. Yamani, Z. Mouayn, “Supersymmetry of the Morse oscillator”, Rep. Math. Phys., 78:3 (2016), 281–294 | DOI | MR
[12] E. A. van Dooren, “Spectral properties of birth-death polynomials”, J. Comput. Appl. Math., 284 (2015), 251–258 | DOI | MR
[13] J. R. Klauder, B.-S. Skagerstam, Coherent States. Applications in Physics and Mathematical Physics, World Sci., Singapore, 1985 | DOI | MR
[14] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, v. 1, Preobrazovaniya Fure, Laplasa, Mellina, Nauka, M., 1969 | MR | Zbl
[15] A. D. Alhaidari, “An extended class of $L^2$-series solutions of the wave equation”, Ann. Phys., 317:1 (2005), 152–174, arXiv: quant-ph/0409002 | DOI | MR
[16] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Grundlehren der mathematischen Wissenschaften, 52, Springer, Berlin, Heidelberg, New York, 1966 | DOI | MR | Zbl