Properties of shape-invariant tridiagonal Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 380-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is known, a nonnegative-definite Hamiltonian $H$ that has a tridiagonal matrix representation in a basis set allows defining forward (and backward) shift operators that can be used to determine the matrix representation of the supersymmetric partner Hamiltonian $H^{(+)}$ in the same basis. We show that if the Hamiltonian is also shape-invariant, then the matrix elements of the Hamiltonian are related such that the energy spectrum is known in terms of these elements. It is also possible to determine the matrix elements of the hierarchy of supersymmetric partner Hamiltonians. Moreover, we derive the coherent states associated with this type of Hamiltonian and illustrate our results with examples from well-studied shape-invariant Hamiltonians that also have a tridiagonal matrix representation.
Keywords: supersymmetry, shape-invariant potential, tridiagonal Hamiltonian, superpotential, raising operator, lowering operator, coherent state.
@article{TMF_2020_203_3_a4,
     author = {H. A. Yamani and Z. Mouayn},
     title = {Properties of shape-invariant tridiagonal {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {380--400},
     year = {2020},
     volume = {203},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a4/}
}
TY  - JOUR
AU  - H. A. Yamani
AU  - Z. Mouayn
TI  - Properties of shape-invariant tridiagonal Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 380
EP  - 400
VL  - 203
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a4/
LA  - ru
ID  - TMF_2020_203_3_a4
ER  - 
%0 Journal Article
%A H. A. Yamani
%A Z. Mouayn
%T Properties of shape-invariant tridiagonal Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 380-400
%V 203
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a4/
%G ru
%F TMF_2020_203_3_a4
H. A. Yamani; Z. Mouayn. Properties of shape-invariant tridiagonal Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 380-400. http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a4/

[1] L. E. Gendenshtein, “Nakhozhdenie tochnykh spektrov uravneniya Shredingera s pomoschyu supersimmetrii”, Pisma v ZhETF, 38:6 (1983), 299–302

[2] R. Dutt, A. Khare, U. P. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials”, Amer. J. Phys., 56:2 (1988), 163–168 | DOI

[3] A. A. Andrianov, N. V. Borisov, M. V. Ioffe, M. I. Eides, “Supersimmetrichnaya mekhanika: novyi vzglyad na ekvivalentnost kvantovykh sistem”, TMF, 61:1 (1984), 17–28 | DOI | MR

[4] A. A. Andrianov, N. V. Borisov, M. V. Ioffe, “The factorization method and quantum systems with equivalent energy spectra”, Phys. Lett. A, 105:1–2 (1984), 19–22 | DOI | MR

[5] F. Cooper, A. Khare, U. P. Sukhatme, “Supersymmetry and quantum mechanics”, Phys. Rep., 251:5–6 (1995), 267–385, arXiv: hep-th/9405029 | DOI | MR

[6] W. H. Miller, Jr., “Lie theory and difference equations. I”, J. Math. Anal. Appl., 28:2 (1969), 383–399 | DOI | MR

[7] V. Spiridonov, L. Vinet, A. Zhedanov, “Difference Schrödinger operators with linear and exponential discrete spectra”, Lett. Math. Phys., 29:1 (1993), 63–73 | DOI | MR

[8] F. Cooper, A. Khare, U. P. Sukhtame, Supersymmetry in Quantum Mechanics, World Sci., Singapore, 2001 | DOI | MR

[9] M. S. Swanson, A Concise Introduction to Quantum Mechanics, Morgan and Claypool Publ., San Rafael, CA, 2018 | DOI

[10] H. A. Yamani, Z. Mouayn, “Supersymmetry of tridiagonal Hamiltonians”, J. Phys. A: Math. Theor., 47:26 (2014), 265203, 16 pp. | DOI | MR

[11] H. A. Yamani, Z. Mouayn, “Supersymmetry of the Morse oscillator”, Rep. Math. Phys., 78:3 (2016), 281–294 | DOI | MR

[12] E. A. van Dooren, “Spectral properties of birth-death polynomials”, J. Comput. Appl. Math., 284 (2015), 251–258 | DOI | MR

[13] J. R. Klauder, B.-S. Skagerstam, Coherent States. Applications in Physics and Mathematical Physics, World Sci., Singapore, 1985 | DOI | MR

[14] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, v. 1, Preobrazovaniya Fure, Laplasa, Mellina, Nauka, M., 1969 | MR | Zbl

[15] A. D. Alhaidari, “An extended class of $L^2$-series solutions of the wave equation”, Ann. Phys., 317:1 (2005), 152–174, arXiv: quant-ph/0409002 | DOI | MR

[16] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Grundlehren der mathematischen Wissenschaften, 52, Springer, Berlin, Heidelberg, New York, 1966 | DOI | MR | Zbl