Mots-clés : soliton.
@article{TMF_2020_203_3_a3,
author = {Hui Mao and Gaihua Wang},
title = {B\"acklund transformations for {the~Degasperis{\textendash}Procesi} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {365--379},
year = {2020},
volume = {203},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a3/}
}
Hui Mao; Gaihua Wang. Bäcklund transformations for the Degasperis–Procesi equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 365-379. http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a3/
[1] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, Italy, December 16–22, 1998), eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 | MR | Zbl
[2] A. Degasperis, D. D. Kholm, A. Khon, “Novoe integriruemoe uravnenie s pikonnymi resheniyami”, TMF, 133:2 (2002), 170–183 | DOI | DOI | MR
[3] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR
[4] A. Constantin, R. I. Ivanov, J. Lenells, “Inverse scattering transform for the Degasperis–Procesi equation”, Nonlinearity, 23:10 (2010), 2559–2575, arXiv: 1205.4754 | DOI | MR
[5] H. Lundmark, J. Szmigielski, “Multi-peakon solutions of the Degasperis–Procesi equation”, Inverse Problems, 19:6 (2003), 1241–1245, arXiv: nlin/0503033 | DOI | MR
[6] H. Lundmark, J. Szmigielski, “Degasperis–Procesi peakons and the discrete cubic string”, Internat. Math. Res. Rap., 2005:2 (2005), 53–116 | DOI | MR
[7] Y. Matsuno, “The $N$-soliton solution of the Degasperis–Procesi equation”, Inverse Probl., 21:6 (2005), 2085–2101 | DOI | MR | Zbl
[8] Y. Matsuno, “Multisolitons of the Degasperis–Procesi equation and their peakon limit”, Inverse Probl., 21:5 (2005), 1553–1570, arXiv: nlin/0511029 | DOI | MR
[9] Y. Matsuno, “Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations”, Phys. Lett. A, 359:5 (2006), 451–457 | DOI | MR
[10] A. Constantin, R. Ivanov, “Dressing method for the Degasperis–Procesi equation”, Stud. Appl. Math., 138:2 (2017), 205–226 | DOI | MR
[11] C. Rogers, W. F. Shadwick, Bäcklund Transformations and Their Applications, Mathematics in Science and Engineering, 161, Academic Press, New York, 1982 | MR
[12] C. Rogers, W. K. Schief, Bäcklund and Darboux transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, 30, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR
[13] C. Gu, H. Hu, Z. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Sci. Tech. Press, Shanghai, 2005
[14] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Texts in Applied Mathematics, 54, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR
[15] Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR
[16] D. Levi, R. Benguria, “Bäcklund transformations and nonlinear differential difference equations”, Proc. Nat. Acad. Sci. USA, 77:9 (1980), 5025–5027 | DOI | MR
[17] D. Levi, “Nonlinear differential difference equations as Bäcklund transformations”, J. Phys. A: Math. Gen., 14:5 (1981), 1083–1098 | DOI | MR
[18] A. G. Rasin, J. Schiff, “The Gardner method for symmetries”, J. Phys. A: Math. Theor., 46:15 (2013), 155202, 15 pp. | DOI | MR
[19] A. G. Rasin, J. Schiff, “Bäcklund transformations for the Camassa–Holm equation”, J. Nonlinear Sci., 27:1 (2017), 45–69 | DOI | MR
[20] G. Wang, Q. P. Liu, H. Mao, “The modified Camassa-Holm equation: Bäcklund transformations and nonlinear superposition formulae”, accepted, J. Phys. A: Math. Theor.
[21] A. G. Rasin, D. Shiff, “Neizvestnye aspekty preobrazovanii Beklunda i assotsiirovannoe uravnenie Degasperisa–Prochezi”, TMF, 196:3 (2018), 449–464 | DOI | DOI
[22] M. C. Nucci, “Painlevé property and pseudopotentials for nonlinear evolution equations”, J. Phys. A: Math. Gen., 22:15 (1989), 2897–2913 | DOI | MR
[23] M. Musette, R. Conte, “Bäcklund transformation of partial differential equations from the Painlevé–Gambier classication. I. Kaup–Kupershmidt equation”, J. Math. Phys., 39:10 (1998), 5617–5630 | DOI | MR
[24] M. Musette, C. Verhoeven, “Nonlinear superposition formula for the Kaup–Kupershmidt partial differential equation”, Phys. D, 144:1–2 (2000), 211–220 | DOI | MR
[25] C. Rogers, P. Wong, “On reciprocal Bäcklund transformations of inverse scattering schemes”, Phys. Scr., 30:1 (1984), 10–14 | DOI | MR