B\"acklund transformations for the~Degasperis--Procesi equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 365-379
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Bäcklund transformation for the Degasperis–Procesi (DP) equation. Using the reciprocal transformation and the associated DP equation, we construct the Bäcklund transformation for the DP equation involving both dependent and independent variables. We also obtain the corresponding nonlinear superposition, which we use together with the Bäcklund transformation to derive some soliton solutions of the DP equation.
Keywords:
Degasperis–Procesi equation, Bäcklund transformation, nonlinear superposition formula
Mots-clés : soliton.
Mots-clés : soliton.
@article{TMF_2020_203_3_a3,
author = {Hui Mao and Gaihua Wang},
title = {B\"acklund transformations for {the~Degasperis--Procesi} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {365--379},
publisher = {mathdoc},
volume = {203},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a3/}
}
TY - JOUR AU - Hui Mao AU - Gaihua Wang TI - B\"acklund transformations for the~Degasperis--Procesi equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 365 EP - 379 VL - 203 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a3/ LA - ru ID - TMF_2020_203_3_a3 ER -
Hui Mao; Gaihua Wang. B\"acklund transformations for the~Degasperis--Procesi equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 365-379. http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a3/