B\"acklund transformations for the~Degasperis--Procesi equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 365-379

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Bäcklund transformation for the Degasperis–Procesi (DP) equation. Using the reciprocal transformation and the associated DP equation, we construct the Bäcklund transformation for the DP equation involving both dependent and independent variables. We also obtain the corresponding nonlinear superposition, which we use together with the Bäcklund transformation to derive some soliton solutions of the DP equation.
Keywords: Degasperis–Procesi equation, Bäcklund transformation, nonlinear superposition formula
Mots-clés : soliton.
@article{TMF_2020_203_3_a3,
     author = {Hui Mao and Gaihua Wang},
     title = {B\"acklund transformations for {the~Degasperis--Procesi} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {365--379},
     publisher = {mathdoc},
     volume = {203},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a3/}
}
TY  - JOUR
AU  - Hui Mao
AU  - Gaihua Wang
TI  - B\"acklund transformations for the~Degasperis--Procesi equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 365
EP  - 379
VL  - 203
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a3/
LA  - ru
ID  - TMF_2020_203_3_a3
ER  - 
%0 Journal Article
%A Hui Mao
%A Gaihua Wang
%T B\"acklund transformations for the~Degasperis--Procesi equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 365-379
%V 203
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a3/
%G ru
%F TMF_2020_203_3_a3
Hui Mao; Gaihua Wang. B\"acklund transformations for the~Degasperis--Procesi equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 365-379. http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a3/