Mots-clés : soliton solution.
@article{TMF_2020_203_3_a0,
author = {Zhi-Qiang Li and Shou-Fu Tian and Wei-Qi Peng and Jin-Jie Yang},
title = {Inverse scattering transform and soliton classification of},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--341},
year = {2020},
volume = {203},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a0/}
}
TY - JOUR AU - Zhi-Qiang Li AU - Shou-Fu Tian AU - Wei-Qi Peng AU - Jin-Jie Yang TI - Inverse scattering transform and soliton classification of JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 323 EP - 341 VL - 203 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a0/ LA - ru ID - TMF_2020_203_3_a0 ER -
Zhi-Qiang Li; Shou-Fu Tian; Wei-Qi Peng; Jin-Jie Yang. Inverse scattering transform and soliton classification of. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 323-341. http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a0/
[1] G. Agraval, Nelineinaya volokonnaya optika, Mir, M., 1996
[2] A. Hasegawa, Y. Kodama, Solitons in Optical Communications, Oxford Univ. Press, Oxford, 1995 | MR
[3] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR
[4] A. Hasegawa, F. D. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion”, Appl. Math. Lett., 23:3 (1973), 142–144 | DOI
[5] K. Porsezian, K. Nakkeeran, “Optical solitons in presence of Kerr dispersion and self-frequency shift”, Phys. Rev. Lett., 76:21 (1996), 3955–3958 ; Erratum, Phys. Rev. Lett., 78:16 (1997), 3227 | DOI | DOI
[6] Yu. S. Kivshar, G. P. Agraval, Opticheskie solitony. Ot volokonnykh svetovodov k fotonnym kristallam, Fizmatlit, M., 2005
[7] S.-F. Tian, T.-T. Zhang, “Long-time asymptotic behavior for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition”, Proc. AMS, 146:4 (2018), 1713–1729 | DOI | MR
[8] S.-F. Tian, “Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method”, J. Differ. Equ., 262:1 (2017), 506–558 | DOI | MR
[9] S.-F. Tian, “The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method”, Proc. Roy. Soc. London Ser. A, 472:2195 (2016), 20160588, 22 pp. | DOI | MR
[10] W.-Q. Peng, S.-F. Tian, T.-T. Zhang, “Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation”, Europhys. Lett., 123:5 (2018), 50005 | DOI
[11] D. Guo, S.-F. Tian, T.-T. Zhang, J. Li, “Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system”, Nonlinear Dyn., 94:4 (2018), 2749–2761 | DOI
[12] K. Nakkeeran, K. Porsezian, P. S. Sundaram, A. Mahalingam, “Optical solitons in $N$-coupled higher order nonlinear Schrödinger equations”, Phys. Rev. Lett., 80:7 (1998), 1425–1428 | DOI
[13] D.-S. Wang, S. Yin, Y. Tian, Y. Liu, “Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects”, Appl. Math. Comput., 229 (2014), 296–309 | DOI | MR
[14] L.-L. Feng, T.-T. Zhang, “Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation”, Appl. Math. Lett., 78 (2018), 133–140 | DOI | MR
[15] R. Hirota, J. Satsuma, “Soliton solutions of a coupled Korteweg–de Vries equation”, Phys. Lett. A, 85:8–9 (1981), 407–408 | DOI | MR
[16] S.-F. Tian, “Initial-boundary value problems for the coupled modified Korteweg–de Vries equation on the interval”, Commun. Pure Appl. Anal., 17:3 (2018), 923–957 | DOI | MR
[17] S.-F. Tian, “Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method”, J. Phys. A: Math. Theor., 50:39 (2017), 395204, 32 pp. | DOI | MR
[18] J. Wu, X. Geng, “Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation”, Commun. Nonlinear Sci. Numer. Simul., 53 (2017), 83–93 | DOI | MR
[19] J. K. Yang, D. J. Kaup, “Squared eigenfunctions for the Sasa–Satsuma equation”, J. Math. Phys., 50:2 (2009), 023504, 21 pp., arXiv: 0902.1210 | DOI | MR
[20] J. Xu, E. Fan, “The unified transform method for the Sasa–Satsuma equation on the half-line”, Proc. Roy. Soc. London Ser. A, 469:2159 (2013), 20130068, 25 pp. | DOI | MR
[21] X. Geng, J. Wu, “Riemann–Hilbert approach and $N$-soliton solutions for a generalized Sasa–Satsuma equation”, Wave Motion, 60 (2016), 62–72 | DOI | MR
[22] D. J. Kedziora, A. Ankiewicz, N. Akhmediev, “Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits”, Phys. Rev. E, 85:6 (2012), 066601, 9 pp. | DOI
[23] K. Nakkeeran, K. Porsezian, “Solitons in an erbium-doped nonlinear fibre medium with stimulated inelastic scattering”, J. Phys. A: Mat. Gen., 28:13 (1995), 3817–3823 | DOI | MR
[24] K. Nakkeeran, K. Porsezian, “Coexistence of a self-induced transparency soliton and a higher order nonlinear Schrödinger soliton in an erbium doped fiber”, Opt. Commun., 123:1–3 (1996), 169–174 | DOI
[25] K. Nakkeeran, “Optical solitons in erbium doped fibers with higher order effects”, Phys. Lett. A, 275:5–6 (2000), 415–418 | DOI
[26] K. Nakkeeran, “Optical solitons in erbium-doped fibres with higher-order effects and pumping”, J. Phys. A., 33:23 (2000), 4377–4382 | DOI | MR
[27] R. Guo, H.-Q. Hao, “Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers”, Ann. Phys., 344 (2014), 10–16 | DOI
[28] K. Porsezian, A. Mahalingam, P. Shanmugha Sundaram, “Integrability aspects of NLS–MB system with variable dispersion and nonlinear effects”, Chaos, Solitons and Fractals, 12:6 (2001), 1137–1143 | DOI
[29] Y.-S. Xue, B. Tian, W.-B. Ai, M. Li, P. Wang, “Integrability and optical solitons in a generalized variable-coefficient coupled Hirota–Maxwell–Bloch system in fiber optics”, Opt. Laser Technol., 48 (2013), 153–159 | DOI
[30] M. J. Ablowitz, A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR
[31] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR
[32] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR
[33] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16, SIAM, Philadelphia, PA, 2010 | DOI | MR
[34] V. S. Shchesnovich, J. Yang, “General soliton matrices in the Riemann–Hilbert problem for integrable nonlinear equations”, J. Math. Phys., 44:10 (2003), 4604–4639, arXiv: nlin/0306027 | DOI | MR
[35] D.-S. Wang, D.-J. Zhang, J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations”, J. Math. Phys., 51:2 (2010), 023510, 17 pp. | DOI | MR
[36] B. Guo, L. Ling, “Riemann–Hilbert approach and $N$-soliton formula for coupled derivative Schrödinger equation”, J. Math. Phys., 53:7 (2012), 073506, 20 pp. | DOI | MR
[37] J. J. Yang, S. F. Tian, W. Q. Peng, T. T. Zhang, “The $N$-coupled higher-order nonlinear Schrödinger equation: Riemann–Hilbert problem and multi-soliton solutions”, Math. Meth. Appl. Sci., 43:5 (2020), 2458–2472 | DOI
[38] J. Xu, E. Fan, “Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons”, J. Differ. Equ., 259:3 (2015), 1098–1148 | DOI | MR
[39] Z. Yan, “An initial-boundary value problem for the integrable spin-1 Gross–Pitaevskii equations with a $4\times 4$ Lax pair on the half-line”, Chaos, 27:5 (2017), 053117, 21 pp., arXiv: 1704.08534 | DOI | MR
[40] J.-P. Wu, X.-G. Geng, “Inverse scattering transform of the coupled Sasa–Satsuma equation by Riemann–Hilbert approach”, Commun. Theor. Phys., 67:5 (2017), 527–534 | DOI | MR
[41] W.-X. Ma, “Riemann–Hilbert problems and $N$-soliton solutions for a coupled mKdV system”, J. Geom. Phys., 132 (2018), 45–54 | DOI | MR
[42] A. V. Mikhailov, V. Yu. Novokshenov, “Analiticheskoe opisanie solitonov, upravlyaemykh dispersiei, metodom zadachi Rimana”, TMF, 137:3 (2003), 433–444 | DOI | DOI | MR | Zbl
[43] A. R. Its, N. A. Slavnov, “O metode zadachi Rimana dlya asimptoticheskogo analiza korrelyatsionnykh funktsii kvantovogo nelineinogo uravneniya Shredingera. Sluchai vzaimodeistvuyuschikh fermionov”, TMF, 119:2 (1999), 179–248 | DOI | DOI | MR | Zbl
[44] Y. Zhang, Y. Cheng, J. He, “Riemann–Hilbert method and $N$-soliton for two-component Gerdjikov–Ivanov equation”, J. Nonliner Math. Phys., 24:2 (2017), 210–223 | DOI | MR
[45] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR
[46] V. S. Gerdjikov, “Basic aspects of soliton theory”, Geometry, Integrability and Quantization (Sts. Constantine and Elena, Bulgaria, June 3–10, 2004), eds. I. M. Mladenov, A. C. Hirshfeld, Bulgarian Academy of Sciences, Sofia, 2005, 78–25 | DOI | MR | Zbl
[47] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR
[48] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl