Threshold effects in a two-fermion system on an optical lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 251-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a wide class of two-particle Schrödinger operators $H(k)=H_0(k)+V$, $k\in\mathbb T^d$, corresponding to a two-fermion system on a $d$-dimensional cubic integer lattice $(d\ge1)$, we prove that for any value $k\in\mathbb T^d$ of the quasimomentum, the discrete spectrum of $H(k)$ below the lower threshold of the essential spectrum is a nonempty set if the following two conditions are satisfied. First, the two-particle operator $H(0)$ corresponding to a zero quasimomentum has either an eigenvalue or a virtual level on the lower threshold of the essential spectrum. Second, the one-particle free (nonperturbed) Schrödinger operator in the coordinate representation generates a semigroup that preserves positivity.
Keywords: two-fermion system, discrete Schrödinger operator, Hamiltonian, conditionally negative-definite function, virtual level, bound state.
Mots-clés : dispersion relation
@article{TMF_2020_203_2_a6,
     author = {S. N. Lakaev and S. Kh. Abdukhakimov},
     title = {Threshold effects in a~two-fermion system on an~optical lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {251--268},
     year = {2020},
     volume = {203},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a6/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - S. Kh. Abdukhakimov
TI  - Threshold effects in a two-fermion system on an optical lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 251
EP  - 268
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a6/
LA  - ru
ID  - TMF_2020_203_2_a6
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A S. Kh. Abdukhakimov
%T Threshold effects in a two-fermion system on an optical lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 251-268
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a6/
%G ru
%F TMF_2020_203_2_a6
S. N. Lakaev; S. Kh. Abdukhakimov. Threshold effects in a two-fermion system on an optical lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 251-268. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a6/

[1] D. C. Mattis, “The few-body problem on lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[2] A. I. Mogilner, “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-Particle Hamiltonians: Spectra and Scattering, Advances in Soviet Mathematics, 5, ed. R. A. Milnos, AMS, Providence, RI, 1991, 139–194 | MR

[3] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, “The threshold effects for the two-particle Hamiltonians on lattices”, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | MR

[4] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, M. D. Lukin, “High-temperature superfluidity of fermionic atoms in optical lattices”, Phys. Rev. Lett., 89:22 (2002), 220407, 4 pp., arXiv: cond-mat/0204237 | DOI

[5] M. Lewenstein, L. Santos, M. A. Baranov, H. Fehrmann, “Atomic Bose–Fermi mixtures in an optical lattice”, Phys. Rev. Lett., 92:5 (2004), 050401, 4 pp., arXiv: cond-mat/0306180 | DOI

[6] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A. J. Daley, A. Kantian, H. P. Buchler, P. Zoller, “Repulsively bound atom pairs in an optical lattice”, Nature, 441 (2006), 853–856, arXiv: cond-mat/0605196 | DOI

[7] V. Bach, W. de Siqueira Pedra, S. N. Lakaev, “Bounds on the discrete spectrum of lattice Schrödinger operators”, J. Math. Phys., 59:2 (2017), 022109, 25 pp., arXiv: 1709.02966 | DOI | MR

[8] P. A. Faria da Veiga, L. Ioriatti, M. O'Carroll, “Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians”, Phys. Rev. E, 66:3 (2002), 016130, 9 pp. | DOI | MR

[9] S. N. Lakaev, “Svyazannye sostoyaniya i rezonansy $N$-chastichnogo diskretnogo operatora Shredingera”, TMF, 91:1 (1992), 51–65 | DOI | MR

[10] S. N. Lakaev, Sh. M. Tilavova, “Sliyanie sobstvennykh znachenii i rezonansov dvukhchastichnogo operatora Shredingera”, TMF, 101:2 (1994), 235–252 | DOI | MR | Zbl

[11] S. N. Lakaev, I. N. Bozorov, “Chislo svyazannykh sostoyanii odnochastichnogo gamiltoniana na trekhmernoi reshetke”, TMF, 158:3 (2009), 425–443 | DOI | DOI | MR | Zbl

[12] S. N. Lakaev, Sh. U. Alladustov, “Polozhitelnost sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, TMF, 178:3 (2014), 390–402 | DOI | DOI | MR | Zbl

[13] Zh. I. Abdullaev, S. N. Lakaev, “Asimptotika diskretnogo spektra raznostnogo trekhchastichnogo operatora Shredingera na reshetke”, TMF, 136:2 (2003), 231–245 | DOI | DOI | MR | Zbl

[14] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR

[15] M. Klaus, B. Simon, “Coupling constants thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Phys., 130:2 (1980), 251–281 | DOI | MR

[16] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, “The low energy expansion in nonrelativistic scattering theory”, Ann. Inst. H. Poincaré Sect. A (N. S.), 37:1 (1982), 1–28 | MR

[17] M. Klaus, “On the bound state of Schrödinger operators in one dimension”, Ann. Phys., 108:2 (1977), 288–300 | DOI | MR

[18] B. Simon, “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Phys., 97:2 (1976), 279–288 | DOI | MR

[19] D. R. Yafaev, “O virtualnom urovne uravneniya Shredingera”, Zap. nauchn. sem. LOMI, 51 (1975), 203–216 | MR | Zbl

[20] A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics”, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR

[21] H. Tamura, “The Efimov effect of three-body Schrödinger operators: asymptotics for the number of negative eigenvalues”, Nagoya Math. J., 130 (1993), 55–83 | DOI | MR

[22] D. R. Yafaev, “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94(136):4(8) (1974), 567–593 | MR | Zbl

[23] S. Albeverio, R. Høegh-Krohn, T. T. Wu, “A class of exactly solvable three-body quantum mechanical problems and the universal low energy behavior”, Phys. Lett. A, 83:3 (1981), 105–109 | DOI | MR

[24] S. Albeverio, S. N. Lakaev, A. M. Khalkhujaev, “Number of eigenvalues of the three-particle Schrödinger operators on lattices”, Markov Process. Related Fields, 18:3 (2012), 387–420 | MR

[25] S. N. Lakaev, “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | DOI | MR | Zbl

[26] Yu. N. Ovchinnikov, I. M. Sigal, “Number of bound states of three-particle systems and Efimov's effect”, Ann. Phys., 123:2 (1989), 274–295 | DOI | MR

[27] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl