Coupling of a biquaternionic Dirac field to a bosonic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 231-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We extend the biquaternionic Dirac equation to include interactions with a background bosonic field. The obtained biquaternionic Dirac equation yields Maxwell-like equations that hold for both a matter field and an electromagnetic field. We establish that the electric field is perpendicular to the matter magnetic field and the magnetic field is perpendicular to the matter inertial field. We show that the inertial and magnetic masses are conserved separately. The magnetic mass density arises as a result of the coupling between the vector potential and the matter inertial field. The presence of the vector and scalar potentials and also the matter inertial and magnetic fields modify the standard form of the derived Maxwell equations. The resulting interacting electrodynamics equations are generalizations of the equations of Wilczek or Chert–Simons axion-like fields. The coupled field in the biquaternioic Dirac field reconstructs the Wilczek axion field. We show that the electromagnetic field vector $\vec F=\vec E+ ic\vec B$, where $\vec E$ and $\vec B$ are the respective electric and magnetic fields, satisfies the massive Dirac equation and, moreover, $\vec\nabla\cdot\vec F=0$.
Keywords: quaternionic quantum mechanics, axion electrodynamics, modified electrodynamics, interacting field, Maxwellian quantum mechanics.
@article{TMF_2020_203_2_a5,
     author = {A. I. Arbab},
     title = {Coupling of a~biquaternionic {Dirac} field to a~bosonic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {231--250},
     year = {2020},
     volume = {203},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a5/}
}
TY  - JOUR
AU  - A. I. Arbab
TI  - Coupling of a biquaternionic Dirac field to a bosonic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 231
EP  - 250
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a5/
LA  - ru
ID  - TMF_2020_203_2_a5
ER  - 
%0 Journal Article
%A A. I. Arbab
%T Coupling of a biquaternionic Dirac field to a bosonic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 231-250
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a5/
%G ru
%F TMF_2020_203_2_a5
A. I. Arbab. Coupling of a biquaternionic Dirac field to a bosonic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 231-250. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a5/

[1] D. J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, Upper Saddle River, NJ, 1999

[2] W. R. Hamilton, Lectures on Quaternions, Macmillan, Cambridge, 1853

[3] A. I. Arbab, “Maxwellian quantum mechanics”, Optik, 136 (2017), 382–389 | DOI

[4] F. Wilczek, “Two applications of axion electrodynamics”, Phys. Rev. Lett., 58:18 (1987), 1799–1803 ; “Problem of strong $P$ and $T$ invariance in the presence of instantons”, 40:5 (1978), 279–283 | DOI | DOI

[5] S.-S. Chern, J. Simons, “Characteristic forms and geometric invariant”, Ann. Math., 99:1 (1974), 48–69 | DOI | MR

[6] S. Weinberg, “A new light boson?”, Phys. Rev. Lett., 40:4 (1978), 223–226 | DOI

[7] Dzh. D. Berken, S. D. Drell, Relyativistskaya kvantovaya teoriya, Nauka, M., 1978 | MR

[8] A. I. Arbab, “Derivation of Dirac, Klein–Gordon, Schrödinger, diffusion and quantum heat transport equations from a universal quantum wave equation”, Europhys. Lett., 92:4 (2010), 40001, 6 pp., arXiv: 1007.1821 | DOI

[9] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, International Series of Monographs on Physics, 88, Oxford Univ. Press, New York, 1992 | MR

[10] D. Finkelstein, J. M. Jauch, S. Schiminovich, D. Speiser, “Foundations of qaternion quantum mechanics”, J. Math. Phys., 3:2 (1962), 207–220 | DOI | MR

[11] L. P. Horwitz, “Schwinger algebra for quaternionic quantum mechanics”, Found. Phys., 27:7 (1997), 1011–1034, arXiv: hep-th/9702080 | DOI | MR

[12] P. A. M. Dirac, “Quantised singularities in the electromagnetic field”, Proc. Roy. Soc. London Ser. A, 133:821 (1931), 60–72 | DOI

[13] S. C. Tiwari, On local duality invariance in electromagnetism, arXiv: 1110.5511

[14] R. D. Peccei, H. R. Quinn, “CP conservation in the presence of pseudoparticles”, Phys. Rev. Lett., 38:25 (1977), 1440–1443 | DOI

[15] L. Visinelli, “Axion-electromagnetic waves”, Modern. Phys. Lett. A, 28:35 (2013), 1350162, 11 pp. | DOI | MR

[16] R. Li, J. Wang, X.-L. Qi, S.-C. Zhang, “Dynamical axion field in topological magnetic insulators”, Nature Phys., 6:4 (2010), 284–288 | DOI

[17] J. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev., 82:5 (1951), 664–679 | DOI | MR

[18] A. I. Arbab, “The extended gauge transformations”, Progr. Electromag. Res. M, 39 (2014), 107–114 | DOI

[19] S. M. Carroll, G. B. Field, R. Jackiw, “Limits on a Lorentz- and parity-violating modification of electrodynamics”, Phys. Rev. D, 41:4 (1990), 1231–1240 | DOI

[20] A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, D. E. Prober, “Tunable superconducting nanoinductors”, Nanotechnology, 21:44 (2010), 445202, arXiv: 1007.4187 | DOI

[21] K. Fukushima, D. E. Kharzeev, H. J. Warringa, “The chiral magnetic effect”, Phys. Rev. D, 78:7 (2008), 074033, 14 pp., arXiv: 0808.3382 | DOI

[22] R. H. Good, Jr., “Particle aspect of the electromagnetic field equations”, Phys. Rev., 105:6 (1957), 1914–1919 | DOI | MR

[23] L. Silberstein, “Elektromagnetische Grundgleichungen in bivektorieller Behandlung”, Ann. Phys. (Leipzig), 327:3 (1907), 579 –586 | DOI

[24] A. Messiah, Quantum Mechanics, Elsevier, Amsterdam, 1999