@article{TMF_2020_203_2_a5,
author = {A. I. Arbab},
title = {Coupling of a~biquaternionic {Dirac} field to a~bosonic field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {231--250},
year = {2020},
volume = {203},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a5/}
}
A. I. Arbab. Coupling of a biquaternionic Dirac field to a bosonic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 231-250. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a5/
[1] D. J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, Upper Saddle River, NJ, 1999
[2] W. R. Hamilton, Lectures on Quaternions, Macmillan, Cambridge, 1853
[3] A. I. Arbab, “Maxwellian quantum mechanics”, Optik, 136 (2017), 382–389 | DOI
[4] F. Wilczek, “Two applications of axion electrodynamics”, Phys. Rev. Lett., 58:18 (1987), 1799–1803 ; “Problem of strong $P$ and $T$ invariance in the presence of instantons”, 40:5 (1978), 279–283 | DOI | DOI
[5] S.-S. Chern, J. Simons, “Characteristic forms and geometric invariant”, Ann. Math., 99:1 (1974), 48–69 | DOI | MR
[6] S. Weinberg, “A new light boson?”, Phys. Rev. Lett., 40:4 (1978), 223–226 | DOI
[7] Dzh. D. Berken, S. D. Drell, Relyativistskaya kvantovaya teoriya, Nauka, M., 1978 | MR
[8] A. I. Arbab, “Derivation of Dirac, Klein–Gordon, Schrödinger, diffusion and quantum heat transport equations from a universal quantum wave equation”, Europhys. Lett., 92:4 (2010), 40001, 6 pp., arXiv: 1007.1821 | DOI
[9] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, International Series of Monographs on Physics, 88, Oxford Univ. Press, New York, 1992 | MR
[10] D. Finkelstein, J. M. Jauch, S. Schiminovich, D. Speiser, “Foundations of qaternion quantum mechanics”, J. Math. Phys., 3:2 (1962), 207–220 | DOI | MR
[11] L. P. Horwitz, “Schwinger algebra for quaternionic quantum mechanics”, Found. Phys., 27:7 (1997), 1011–1034, arXiv: hep-th/9702080 | DOI | MR
[12] P. A. M. Dirac, “Quantised singularities in the electromagnetic field”, Proc. Roy. Soc. London Ser. A, 133:821 (1931), 60–72 | DOI
[13] S. C. Tiwari, On local duality invariance in electromagnetism, arXiv: 1110.5511
[14] R. D. Peccei, H. R. Quinn, “CP conservation in the presence of pseudoparticles”, Phys. Rev. Lett., 38:25 (1977), 1440–1443 | DOI
[15] L. Visinelli, “Axion-electromagnetic waves”, Modern. Phys. Lett. A, 28:35 (2013), 1350162, 11 pp. | DOI | MR
[16] R. Li, J. Wang, X.-L. Qi, S.-C. Zhang, “Dynamical axion field in topological magnetic insulators”, Nature Phys., 6:4 (2010), 284–288 | DOI
[17] J. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev., 82:5 (1951), 664–679 | DOI | MR
[18] A. I. Arbab, “The extended gauge transformations”, Progr. Electromag. Res. M, 39 (2014), 107–114 | DOI
[19] S. M. Carroll, G. B. Field, R. Jackiw, “Limits on a Lorentz- and parity-violating modification of electrodynamics”, Phys. Rev. D, 41:4 (1990), 1231–1240 | DOI
[20] A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, D. E. Prober, “Tunable superconducting nanoinductors”, Nanotechnology, 21:44 (2010), 445202, arXiv: 1007.4187 | DOI
[21] K. Fukushima, D. E. Kharzeev, H. J. Warringa, “The chiral magnetic effect”, Phys. Rev. D, 78:7 (2008), 074033, 14 pp., arXiv: 0808.3382 | DOI
[22] R. H. Good, Jr., “Particle aspect of the electromagnetic field equations”, Phys. Rev., 105:6 (1957), 1914–1919 | DOI | MR
[23] L. Silberstein, “Elektromagnetische Grundgleichungen in bivektorieller Behandlung”, Ann. Phys. (Leipzig), 327:3 (1907), 579 –586 | DOI
[24] A. Messiah, Quantum Mechanics, Elsevier, Amsterdam, 1999