Quantization of the~theory of half-differentiable strings
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 220-230

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of quantizing the space $\Omega_d$ of smooth loops taking values in the $d$-dimensional vector space can be solved in the framework of the standard Dirac approach. But a natural symplectic form on $\Omega_d$ can be extended to the Hilbert completion of $\Omega_d$ coinciding with the Sobolev space $V_d:=H_0^{1/2}(\mathbb S^1,\mathbb R^d)$ of half-differentiable loops with values in $\mathbb R^d$. We regard $V_d$ as the phase space of the theory of half-differentiable strings. This theory can be quantized using ideas from noncommutative geometry.
Keywords: string theory, quasisymmetric homeomorphism, universal Teichmüller space.
Mots-clés : Connes quantization
@article{TMF_2020_203_2_a4,
     author = {A. G. Sergeev},
     title = {Quantization of the~theory of half-differentiable strings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {220--230},
     publisher = {mathdoc},
     volume = {203},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Quantization of the~theory of half-differentiable strings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 220
EP  - 230
VL  - 203
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/
LA  - ru
ID  - TMF_2020_203_2_a4
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Quantization of the~theory of half-differentiable strings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 220-230
%V 203
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/
%G ru
%F TMF_2020_203_2_a4
A. G. Sergeev. Quantization of the~theory of half-differentiable strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 220-230. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/