Quantization of the theory of half-differentiable strings
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 220-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of quantizing the space $\Omega_d$ of smooth loops taking values in the $d$-dimensional vector space can be solved in the framework of the standard Dirac approach. But a natural symplectic form on $\Omega_d$ can be extended to the Hilbert completion of $\Omega_d$ coinciding with the Sobolev space $V_d:=H_0^{1/2}(\mathbb S^1,\mathbb R^d)$ of half-differentiable loops with values in $\mathbb R^d$. We regard $V_d$ as the phase space of the theory of half-differentiable strings. This theory can be quantized using ideas from noncommutative geometry.
Keywords: string theory, quasisymmetric homeomorphism
Mots-clés : Connes quantization, universal Teichmüller space.
@article{TMF_2020_203_2_a4,
     author = {A. G. Sergeev},
     title = {Quantization of the~theory of half-differentiable strings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {220--230},
     year = {2020},
     volume = {203},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Quantization of the theory of half-differentiable strings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 220
EP  - 230
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/
LA  - ru
ID  - TMF_2020_203_2_a4
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Quantization of the theory of half-differentiable strings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 220-230
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/
%G ru
%F TMF_2020_203_2_a4
A. G. Sergeev. Quantization of the theory of half-differentiable strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 220-230. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/

[1] J. Scherk, “An introduction to the theory of dual models and strings”, Rev. Modern Phys., 47:1 (1975), 123–164 | DOI | MR

[2] M. J. Bowick, S. G. Rajeev, “The holomorphic geometry of closed bosonic string theory and $\mathrm{Diff}\mathbb S^1/\mathbb S^1$”, Nucl. Phys. B, 293 (1987), 348–384 | DOI | MR

[3] A. G. Sergeev, “Tvistornoe kvantovanie prostranstva petel $\Omega\mathbb R^d$”, Tr. In-ta matem. NAN Ukrainy, 6:1 (2009), 287–305

[4] A. G. Sergeev, Kelerova geometriya prostranstv petel, MTsNMO, M., 2001

[5] G. Segal, “Unitary representations of some infinite dimensional groups”, Commun. Math. Phys., 80:3 (1981), 301–342 | DOI | MR

[6] R. Goodman, N. R. Wallach, “Projective unitary positive-energy representations of $\mathrm{Diff}(\mathbb S^1)$”, J. Funct. Anal., 63:3 (1985), 299–321 | DOI | MR

[7] A. Pressli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR

[8] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[9] S. Nag, D. Sullivan, “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32:1 (1995), 1–34 | MR | Zbl

[10] A. Connes, Géométrie non commutative, InterÉditions, Paris, 1990 | MR

[11] H. M. Reimann, “Ordinary differential equations and quasiconformal mappings”, Invent. Math., 33:3 (1976), 247–270 | DOI | MR