Mots-clés : Connes quantization, universal Teichmüller space.
@article{TMF_2020_203_2_a4,
author = {A. G. Sergeev},
title = {Quantization of the~theory of half-differentiable strings},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {220--230},
year = {2020},
volume = {203},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/}
}
A. G. Sergeev. Quantization of the theory of half-differentiable strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 220-230. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a4/
[1] J. Scherk, “An introduction to the theory of dual models and strings”, Rev. Modern Phys., 47:1 (1975), 123–164 | DOI | MR
[2] M. J. Bowick, S. G. Rajeev, “The holomorphic geometry of closed bosonic string theory and $\mathrm{Diff}\mathbb S^1/\mathbb S^1$”, Nucl. Phys. B, 293 (1987), 348–384 | DOI | MR
[3] A. G. Sergeev, “Tvistornoe kvantovanie prostranstva petel $\Omega\mathbb R^d$”, Tr. In-ta matem. NAN Ukrainy, 6:1 (2009), 287–305
[4] A. G. Sergeev, Kelerova geometriya prostranstv petel, MTsNMO, M., 2001
[5] G. Segal, “Unitary representations of some infinite dimensional groups”, Commun. Math. Phys., 80:3 (1981), 301–342 | DOI | MR
[6] R. Goodman, N. R. Wallach, “Projective unitary positive-energy representations of $\mathrm{Diff}(\mathbb S^1)$”, J. Funct. Anal., 63:3 (1985), 299–321 | DOI | MR
[7] A. Pressli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR
[8] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[9] S. Nag, D. Sullivan, “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32:1 (1995), 1–34 | MR | Zbl
[10] A. Connes, Géométrie non commutative, InterÉditions, Paris, 1990 | MR
[11] H. M. Reimann, “Ordinary differential equations and quasiconformal mappings”, Invent. Math., 33:3 (1976), 247–270 | DOI | MR