Mots-clés : Darboux transformation, multisoliton solution.
@article{TMF_2020_203_2_a3,
author = {Nianhua Li and Gaihua Wang and Yonghui Kuang},
title = {Multisoliton solutions of {the~Degasperis{\textendash}Procesi} equation and its shortwave limit: {Darboux} transformation approach},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {205--219},
year = {2020},
volume = {203},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a3/}
}
TY - JOUR AU - Nianhua Li AU - Gaihua Wang AU - Yonghui Kuang TI - Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 205 EP - 219 VL - 203 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a3/ LA - ru ID - TMF_2020_203_2_a3 ER -
%0 Journal Article %A Nianhua Li %A Gaihua Wang %A Yonghui Kuang %T Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 205-219 %V 203 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a3/ %G ru %F TMF_2020_203_2_a3
Nianhua Li; Gaihua Wang; Yonghui Kuang. Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 205-219. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a3/
[1] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, Italy, December 16–22, 1998), eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 | MR
[2] H. R. Dullin, G. A. Gottwald, D. D. Holm, “Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves”, Fluid Dynam. Res., 33:1–2 (2003), 73–95 | DOI | MR
[3] D. D. Holm, M. F. Staley, “Wave structure and nonlinear balances in a family of evolutionary PDEs”, SIAM J. Appl. Dyn. Syst., 2:3 (2003), 323–380 | DOI | MR
[4] A. Constantin, D. Lannes, “The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations”, Arch. Ration. Mech. Anal., 192:1 (2009), 165–186 | DOI | MR
[5] A. Degasperis, D. D. Kholm, A. Khon, “Novoe integriruemoe uravnenie s pikonnymi resheniyami”, TMF, 133:2 (2002), 170–183 | DOI | DOI | MR
[6] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR
[7] H. Lundmark, J. Szmigielski, “Multi-peakon solutions of the Degasperis–Procesi equation”, Inverse Problems, 19:6 (2003), 1241–1245, arXiv: nlin/0503033 | DOI | MR
[8] H. Lundmark, J. Szmigielski, “Degasperis–Procesi peakons and the discrete cubic string”, Int. Math. Res. Rap., 2005:2 (2005), 53–116 | MR
[9] A. Constantin, R. I. Ivanov, J. Lenells, “Inverse scattering transform for the Degasperis–Procesi equation”, Nonlinearity, 23:10 (2010), 2559–2575, arXiv: 1205.4754 | DOI | MR
[10] A. Boutet de Monvel, D. Shepelsky, “A Riemann–Hilbert approach for the Degasperis–Procesi equation”, Nonlinearity, 26:7 (2013), 2081–2107 | DOI | MR
[11] A. Constantin, R. Ivanov, “Dressing method for the Degasperis–Procesi equation”, Stud. Appl. Math., 138:2 (2017), 205–226 | DOI | MR
[12] Y. Matsuno, “Multisolitons of the Degasperis–Procesi equation and their peakon limit”, Inverse Problems, 21:5 (2005), 1553–1570, arXiv: nlin/0511029 | DOI | MR
[13] Y. Matsuno, “The $N$-soliton solution of the Degasperis–Procesi equation”, Inverse Problems, 21:6 (2005), 2085–2101 | DOI | MR
[14] S. Stalin, M. Senthilvelan, “Multi-loop soliton solutions and their interaction in the Degasperis–Procesi equation”, Phys. Scr., 86:1 (2012), 015006, 7 pp., arXiv: 1207.4634 | DOI
[15] J. K. Hunter, R. Saxton, “Dynamics of director fields”, SIAM J. Appl. Math., 51:6 (1991), 1498–1521 | DOI | MR
[16] J. K. Hunter, Y. Zheng, “On a completely integrable nonlinear hyperbolic variational equation”, Phys. D, 79:2–4 (1994), 361–386 | DOI | MR
[17] T. Schäfer, C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196:1–2 (2004), 90–105 | DOI | MR
[18] Y. Matsuno, “Smooth and singular multisoliton solutions of a modified Camassa–Holm equation with cubic nonlinearity and linear dispersion”, J. Phys. A: Math. Theor., 47:12 (2014), 125203, 25 pp., arXiv: 1310.4011 | DOI | MR
[19] A. Sakovich, S. Sakovich, “The short pulse equation is integrable”, J. Phys. Soc. Japan, 74:1 (2005), 239–241, arXiv: nlin/0409034 | DOI
[20] J. C. Brunelli, “The bi-Hamiltonian structure of the short pulse equation”, Phys. Lett. A, 353:6 (2006), 475–478, arXiv: nlin/0601014 | DOI | MR
[21] S. Liu, L. Wang, W. Liu, D. Qiu, J. He, “The determinant representation of an $N$-fold Darboux transformation for the short pulse equation”, J. Nonlinear Math. Phys., 24:2 (2017), 183–194 | DOI | MR
[22] V. A. Vakhnenko, “Solitons in a nonlinear model medium”, J. Phys. A: Math. Gen., 25:15 (1992), 4181–4187 | DOI | MR
[23] A. N. W. Hone, J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equations”, Inverse Problems, 19:1 (2003), 129–145 | DOI | MR
[24] J. C. Brunelli, S. Sakovich, “Hamiltonian structures for the Ostrovsky–Vakhnenko equation”, Commun. Nonlinear Sci. Numer. Simul., 18:1 (2013), 56–62 | DOI | MR
[25] B.-F. Feng, K. Maruno, Y. Ohta, “Integrable semi-discretizations of the reduced Ostrovsky equation”, J. Phys. A: Math. Theor., 48:13 (2015), 135203, 20 pp., arXiv: 1502.03891 | DOI | MR
[26] V. O. Vakhnenko, E. J. Parkes, “The two loop soliton solution of the Vakhnenko equation”, Nonlinearity, 11:6 (1998), 1457–1464 | DOI | MR
[27] A. J. Morrison, E. J. Parkes, V. O. Vakhnenko, “The $N$ loop soliton solution of the Vakhnenko equation”, Nonlinearity, 12:5 (1999), 1427–1437 | DOI | MR
[28] V. O. Vakhnenko, E. J. Parkes, “The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method”, Chaos, Solitons and Fractals, 13:9 (2002), 1819–1826 | DOI | MR
[29] Y. Matsuno, “Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations”, Phys. Lett. A, 359:5 (2006), 451–457 | DOI | MR
[30] C. M. Bender, J. Feinberg, “Does the complex deformation for the Riemann equation exhibit shocks?”, J. Phys. A: Math. Theor., 41:24 (2008), 244004, 8 pp., arXiv: 0709.2727 | DOI | MR
[31] Y. Li, J. E. Zhang, “The multiple-soliton solution of the Camassa–Holm equation”, Proc. Roy. Soc. London. Ser. A, 460:2049 (2004), 2617–2627 | DOI | MR
[32] Y. Li, “Some water wave equations and integrability”, J. Nonlinear Math. Phys., 12:suppl. 1 (2005), 466–481 | DOI | MR
[33] B. Xia, R. Zhou, Z. Qiao, “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation”, J. Math. Phys., 57:10 (2016), 103502, 12 pp., arXiv: 1506.08639 | DOI | MR
[34] P. R. Gordoa, A. Pickering, “Nonisospectral scattering problems: a key to integrable hierarchies”, J. Math. Phys., 40:11 (1999), 5749–5786 | DOI | MR
[35] D. Levi, O. Ragnisco, “Non-isospectral deformations and Darboux transformations for the third-order spectral problem”, Inverse Problems, 4:3 (1988), 815–828 | DOI | MR
[36] S. B. Leble, N. V. Ustinov, “Third order spectral problems: reductions and Darboux transformations”, Inverse Problems, 10:3 (1994), 617–633 | DOI | MR
[37] I. Loris, “On reduced CKP equations”, Inverse Problems, 15:4 (1999), 1099–1109 | DOI | MR