Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 205-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a new approach for calculating multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit by combining a reciprocal transformation with the Darboux transformation of the negative flow of the Kaup–Kupershmidt hierarchy. In particular, different specifications of the soliton parameters lead to two different types of soliton solutions of the Degasperis–Procesi equation.
Keywords: Degasperis–Procesi equation
Mots-clés : Darboux transformation, multisoliton solution.
@article{TMF_2020_203_2_a3,
     author = {Nianhua Li and Gaihua Wang and Yonghui Kuang},
     title = {Multisoliton solutions of {the~Degasperis{\textendash}Procesi} equation and its shortwave limit: {Darboux} transformation approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--219},
     year = {2020},
     volume = {203},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a3/}
}
TY  - JOUR
AU  - Nianhua Li
AU  - Gaihua Wang
AU  - Yonghui Kuang
TI  - Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 205
EP  - 219
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a3/
LA  - ru
ID  - TMF_2020_203_2_a3
ER  - 
%0 Journal Article
%A Nianhua Li
%A Gaihua Wang
%A Yonghui Kuang
%T Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 205-219
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a3/
%G ru
%F TMF_2020_203_2_a3
Nianhua Li; Gaihua Wang; Yonghui Kuang. Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 205-219. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a3/

[1] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, Italy, December 16–22, 1998), eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 | MR

[2] H. R. Dullin, G. A. Gottwald, D. D. Holm, “Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves”, Fluid Dynam. Res., 33:1–2 (2003), 73–95 | DOI | MR

[3] D. D. Holm, M. F. Staley, “Wave structure and nonlinear balances in a family of evolutionary PDEs”, SIAM J. Appl. Dyn. Syst., 2:3 (2003), 323–380 | DOI | MR

[4] A. Constantin, D. Lannes, “The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations”, Arch. Ration. Mech. Anal., 192:1 (2009), 165–186 | DOI | MR

[5] A. Degasperis, D. D. Kholm, A. Khon, “Novoe integriruemoe uravnenie s pikonnymi resheniyami”, TMF, 133:2 (2002), 170–183 | DOI | DOI | MR

[6] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR

[7] H. Lundmark, J. Szmigielski, “Multi-peakon solutions of the Degasperis–Procesi equation”, Inverse Problems, 19:6 (2003), 1241–1245, arXiv: nlin/0503033 | DOI | MR

[8] H. Lundmark, J. Szmigielski, “Degasperis–Procesi peakons and the discrete cubic string”, Int. Math. Res. Rap., 2005:2 (2005), 53–116 | MR

[9] A. Constantin, R. I. Ivanov, J. Lenells, “Inverse scattering transform for the Degasperis–Procesi equation”, Nonlinearity, 23:10 (2010), 2559–2575, arXiv: 1205.4754 | DOI | MR

[10] A. Boutet de Monvel, D. Shepelsky, “A Riemann–Hilbert approach for the Degasperis–Procesi equation”, Nonlinearity, 26:7 (2013), 2081–2107 | DOI | MR

[11] A. Constantin, R. Ivanov, “Dressing method for the Degasperis–Procesi equation”, Stud. Appl. Math., 138:2 (2017), 205–226 | DOI | MR

[12] Y. Matsuno, “Multisolitons of the Degasperis–Procesi equation and their peakon limit”, Inverse Problems, 21:5 (2005), 1553–1570, arXiv: nlin/0511029 | DOI | MR

[13] Y. Matsuno, “The $N$-soliton solution of the Degasperis–Procesi equation”, Inverse Problems, 21:6 (2005), 2085–2101 | DOI | MR

[14] S. Stalin, M. Senthilvelan, “Multi-loop soliton solutions and their interaction in the Degasperis–Procesi equation”, Phys. Scr., 86:1 (2012), 015006, 7 pp., arXiv: 1207.4634 | DOI

[15] J. K. Hunter, R. Saxton, “Dynamics of director fields”, SIAM J. Appl. Math., 51:6 (1991), 1498–1521 | DOI | MR

[16] J. K. Hunter, Y. Zheng, “On a completely integrable nonlinear hyperbolic variational equation”, Phys. D, 79:2–4 (1994), 361–386 | DOI | MR

[17] T. Schäfer, C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196:1–2 (2004), 90–105 | DOI | MR

[18] Y. Matsuno, “Smooth and singular multisoliton solutions of a modified Camassa–Holm equation with cubic nonlinearity and linear dispersion”, J. Phys. A: Math. Theor., 47:12 (2014), 125203, 25 pp., arXiv: 1310.4011 | DOI | MR

[19] A. Sakovich, S. Sakovich, “The short pulse equation is integrable”, J. Phys. Soc. Japan, 74:1 (2005), 239–241, arXiv: nlin/0409034 | DOI

[20] J. C. Brunelli, “The bi-Hamiltonian structure of the short pulse equation”, Phys. Lett. A, 353:6 (2006), 475–478, arXiv: nlin/0601014 | DOI | MR

[21] S. Liu, L. Wang, W. Liu, D. Qiu, J. He, “The determinant representation of an $N$-fold Darboux transformation for the short pulse equation”, J. Nonlinear Math. Phys., 24:2 (2017), 183–194 | DOI | MR

[22] V. A. Vakhnenko, “Solitons in a nonlinear model medium”, J. Phys. A: Math. Gen., 25:15 (1992), 4181–4187 | DOI | MR

[23] A. N. W. Hone, J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equations”, Inverse Problems, 19:1 (2003), 129–145 | DOI | MR

[24] J. C. Brunelli, S. Sakovich, “Hamiltonian structures for the Ostrovsky–Vakhnenko equation”, Commun. Nonlinear Sci. Numer. Simul., 18:1 (2013), 56–62 | DOI | MR

[25] B.-F. Feng, K. Maruno, Y. Ohta, “Integrable semi-discretizations of the reduced Ostrovsky equation”, J. Phys. A: Math. Theor., 48:13 (2015), 135203, 20 pp., arXiv: 1502.03891 | DOI | MR

[26] V. O. Vakhnenko, E. J. Parkes, “The two loop soliton solution of the Vakhnenko equation”, Nonlinearity, 11:6 (1998), 1457–1464 | DOI | MR

[27] A. J. Morrison, E. J. Parkes, V. O. Vakhnenko, “The $N$ loop soliton solution of the Vakhnenko equation”, Nonlinearity, 12:5 (1999), 1427–1437 | DOI | MR

[28] V. O. Vakhnenko, E. J. Parkes, “The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method”, Chaos, Solitons and Fractals, 13:9 (2002), 1819–1826 | DOI | MR

[29] Y. Matsuno, “Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations”, Phys. Lett. A, 359:5 (2006), 451–457 | DOI | MR

[30] C. M. Bender, J. Feinberg, “Does the complex deformation for the Riemann equation exhibit shocks?”, J. Phys. A: Math. Theor., 41:24 (2008), 244004, 8 pp., arXiv: 0709.2727 | DOI | MR

[31] Y. Li, J. E. Zhang, “The multiple-soliton solution of the Camassa–Holm equation”, Proc. Roy. Soc. London. Ser. A, 460:2049 (2004), 2617–2627 | DOI | MR

[32] Y. Li, “Some water wave equations and integrability”, J. Nonlinear Math. Phys., 12:suppl. 1 (2005), 466–481 | DOI | MR

[33] B. Xia, R. Zhou, Z. Qiao, “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation”, J. Math. Phys., 57:10 (2016), 103502, 12 pp., arXiv: 1506.08639 | DOI | MR

[34] P. R. Gordoa, A. Pickering, “Nonisospectral scattering problems: a key to integrable hierarchies”, J. Math. Phys., 40:11 (1999), 5749–5786 | DOI | MR

[35] D. Levi, O. Ragnisco, “Non-isospectral deformations and Darboux transformations for the third-order spectral problem”, Inverse Problems, 4:3 (1988), 815–828 | DOI | MR

[36] S. B. Leble, N. V. Ustinov, “Third order spectral problems: reductions and Darboux transformations”, Inverse Problems, 10:3 (1994), 617–633 | DOI | MR

[37] I. Loris, “On reduced CKP equations”, Inverse Problems, 15:4 (1999), 1099–1109 | DOI | MR