Integration of the nonlinear Korteweg–de Vries equation with an additional term
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 192-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the method of the inverse spectral problem to integrate the nonlinear Korteweg–de Vries equation with an additional term in the class of periodic functions.
Keywords: Korteweg–de Vries equation with an additional term, inverse spectral problem, Sturm–Liouville operator, Dubrovin system of equations.
Mots-clés : Lax pair, trace formula
@article{TMF_2020_203_2_a2,
     author = {A. B. Khasanov and M. M. Matjakubov},
     title = {Integration of the~nonlinear {Korteweg{\textendash}de} {Vries} equation with an~additional term},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {192--204},
     year = {2020},
     volume = {203},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a2/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - M. M. Matjakubov
TI  - Integration of the nonlinear Korteweg–de Vries equation with an additional term
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 192
EP  - 204
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a2/
LA  - ru
ID  - TMF_2020_203_2_a2
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A M. M. Matjakubov
%T Integration of the nonlinear Korteweg–de Vries equation with an additional term
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 192-204
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a2/
%G ru
%F TMF_2020_203_2_a2
A. B. Khasanov; M. M. Matjakubov. Integration of the nonlinear Korteweg–de Vries equation with an additional term. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 192-204. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a2/

[1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[2] L. D. Faddeev, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Tr. MIAN SSSR, 73 (1964), 314–336 | MR | Zbl

[3] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | MR | Zbl

[4] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[5] P. D. Leks, “Integraly nelineinykh evolyutsionnykh uravnenii i uedinennye volny”, Matematika, 13:5 (1969), 128–150 | MR | Zbl

[6] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki v odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134

[7] M. Wadati, “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 32:6 (1972), 1681 | DOI

[8] V. E. Zakharov, L. A. Takhtadzhyan, L. D. Faddeev, “Polnoe opisanie reshenii “sin-Gordon” uravneniya”, Dokl. AN SSSR, 219:6 (1974), 1334–1337 | MR | Zbl

[9] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR

[10] I. S. Frolov, “Obratnaya zadacha rasseyaniya dlya sistemy Diraka na vsei osi”, Dokl. AN SSSR, 207:1 (1972), 44–47 | MR | Zbl

[11] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl

[12] A. B. Khasanov, G. U. Urazboev, “Ob uravnenii sin-Gordon s samosoglasovannym istochnikom, sootvetstvuyuschem kratnym sobstvennym znacheniyam”, Differents. uravneniya, 43:4 (2007), 544–552 | DOI

[13] A. B. Khasanov, G. U. Urazboev, “Ob integrirovanii uravneniya sine-Gordon s samosoglasovannym istochnikom integralnogo tipa v sluchae kratnykh sobstvennykh znachenii”, Izv. vuzov. Matem., 2009, no. 3, 55–66 | DOI | MR | Zbl

[14] A. B. Khasanov, A. A. Reiimberganov, “O konechno plotnom reshenii vysshego nelineinogo uravneniya Shredingera s samosoglasovannym istochnikom”, Ufimsk. matem. zhurn., 1:4 (2009), 133–143 | Zbl

[15] A. B. Khasanov, U. A. Khoitmetov, “Ob integrirovanii uravneniya Kortevega–de Friza v klasse bystroubyvayuschikh kompleksnoznachnykh funktsii”, Izv. vuzov. Matem., 2018, no. 3, 79–90 | DOI

[16] A. B. Khasanov, K. A. Mamedov, “O modifitsirovannom uravnenii Kortevega–de Friza s samosoglasovannym istochnikom integralnogo tipa, sootvetstvuyuschego kratnym sobstvennym znacheniyam”, Uzb. matem. zhurn., 2007, no. 4, 81–93

[17] A. R. Its, V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Frisa”, TMF, 23:1 (1975), 51–68 | DOI | MR

[18] B. A. Dubrovin, S. P. Novikov, “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, ZhETF, 67:6 (1974), 2131–2144

[19] Yu. A. Mitropolskii, N. N. Bogolyubov (ml.), A. K. Prikarpatskii, V. G. Samoilenko, Integriruemye dinamicheskie sistemy: spektralnye i differentsialno-geometricheskie aspekty, Naukova dumka, Kiev, 1987

[20] V. E. Zaxarov, S. V. Manakov, S. P. Novikov, L. P. Pitaevckii, Teoriya colitonov: metod obratnoi zadachi, Nauka, M., 1980

[21] H. McKean, E. Trubowitz, “Hill's operator and hyperelliptic function theory in the presence of infinitely many branchpoints”, Commun. Pure Appl. Math., 29:2 (1976), 143–226

[22] H. McKean, E. Trubowitz, “Hill's surfaces and their theta functions”, Bull. Amer. Math. Soc., 84:6 (1978), 1052–1085 | MR | Zbl

[23] M. U. Schmidt, Integrable Systems and Riemann Surfaces of Infinite Genus, Memoirs of the American Mathematical Society, 122, no. 581, AMS, Providence, RI, 1996, arXiv: solv-int/9412006 | DOI | MR

[24] B. A. Dubrovin, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i ego pril., 9:3 (1975), 41–51 | DOI | MR | Zbl

[25] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology and Mathematical Physics, Amer. Math. Soc. transl. Ser. 2, no. 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 125–138 | DOI

[26] A. B. Khasanov, A. B. Yakhshimuratov, “Ob uravnenii Kortevega–de Friza s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, TMF, 164:2 (2010), 214–221 | DOI | DOI

[27] A. Yakshimuratov, “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions”, Math. Phys. Anal. Geom., 14:2 (2011), 153–169 | DOI

[28] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Matem. sb., 185:8 (1994), 103–114 | DOI | MR | Zbl

[29] P. D. Lax, “Almost periodic solutions of the KdV equation”, SIAM Rev., 18:3 (1976), 438–462 | DOI

[30] A. V. Domrin, “Meromorfnoe prodolzhenie reshenii solitonnykh uravnenii”, Izv. RAN. Ser. matem., 74:3 (2010), 23–44 | DOI | DOI | MR | Zbl

[31] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 1, 2, IL, M., 1960, 1961 | MR

[32] I. V. Stankevich, “Ob odnoi zadache spektralnogo analiza dlya uravneniya Khilla”, Dokl. AN SSSR, 192:1 (1970), 34–37 | MR | Zbl

[33] N. I. Akhiezer, “Kontinualnye analogi ortogonalnykh mnogochlenov na sisteme intervalov”, Dokl. AN SSSR, 141:2 (1961), 263–266 | MR | Zbl

[34] E. Trubowitz, “The inverse problem for periodic potentials”, Commun. Pure. Appl. Math., 30 (1977), 321–337 | DOI

[35] H. Hochstadt, “On the determination of Hill's equation from its spectrum”, Arch. Rational Mech. Anal., 19 (1965), 353–362 | DOI

[36] H. P. McKean, P. van Moerbeke, “The spectrum of Hill's equation”, Invent. Math., 30:3 (1975), 217–274 | DOI

[37] H. Flaschka, “On the inverse problem for Hill's operator”, Arch. Rational Mech. Anal., 59:4 (1975), 293–309 | DOI

[38] H. Hochstadt, “Estimates on the stability intervals for the Hill's equation”, Proc. AMS, 14 (1963), 930–932 | DOI | MR | Zbl

[39] B. M. Levitan, G. Sh. Guseinov, “Vychislenie glavnogo chlena asimptotiki dliny lakuny periodicheskoi zadachi Shturma–Liuvillya”, Serdika B'lgarsko matematichesko spisanie, 3 (1977), 273–280

[40] H. Hochstadt, “A generalization of Borg's inverse theorem for Hill's equations”, J. Math. Anal. Appl., 102:2 (1984), 599–605 | DOI

[41] G. Borg, “Eine Umkehrung der Sturm-Liouvillschen Eigenwertaufgabe, Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78 (1946), 1–96 | DOI | MR