Algebra of gauge theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 179-191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a further development of the algebraic aspect of gauge theories initiated in our previous papers.
Keywords: algebra, multiplicator, derivation, covariant derivative, curvature, gauge transformation
Mots-clés : module, covariant multiplier, moduli space.
@article{TMF_2020_203_2_a1,
     author = {V. V. Zharinov},
     title = {Algebra of gauge theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--191},
     year = {2020},
     volume = {203},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a1/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Algebra of gauge theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 179
EP  - 191
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a1/
LA  - ru
ID  - TMF_2020_203_2_a1
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Algebra of gauge theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 179-191
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a1/
%G ru
%F TMF_2020_203_2_a1
V. V. Zharinov. Algebra of gauge theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 179-191. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a1/

[1] V. V. Zharinov, “Algebraicheskii vzglyad na kalibrovochnye teorii”, TMF, 180:2 (2014), 217–233 | DOI | DOI | MR

[2] V. V. Zharinov, “Analiz v algebrakh i modulyakh”, Tr. MIAN, 301 (2018), 108–118 | DOI | DOI | MR

[3] V. V. Zharinov, “Analiz v differentsialnykh algebrakh i modulyakh”, TMF, 196:1 (2018), 3–21 | DOI | DOI | MR

[4] V. V. Zharinov, “Analiz v nekommutativnykh algebrakh i modulyakh”, Tr. MIAN, 306 (2019), 100–111 | DOI | DOI | MR

[5] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer, New York, 1998 | MR

[6] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, 114, Springer, Berlin–Heidelberg–New York, 1963 | MR

[7] C. McLarty, Elementary Categories, Elementary Toposes, Clarendon Press, Oxford, 2005 | MR

[8] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR | MR | Zbl

[9] K. B. Marathe, G. Martucci, The Mathematical Foundations of Gauge Theories, Studies in Mathematical Physics, 5, North-Holland, Amsterdam, 1992 | MR

[10] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005 | MR | Zbl