Mots-clés : module, covariant multiplier, moduli space.
@article{TMF_2020_203_2_a1,
author = {V. V. Zharinov},
title = {Algebra of gauge theories},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--191},
year = {2020},
volume = {203},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a1/}
}
V. V. Zharinov. Algebra of gauge theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 2, pp. 179-191. http://geodesic.mathdoc.fr/item/TMF_2020_203_2_a1/
[1] V. V. Zharinov, “Algebraicheskii vzglyad na kalibrovochnye teorii”, TMF, 180:2 (2014), 217–233 | DOI | DOI | MR
[2] V. V. Zharinov, “Analiz v algebrakh i modulyakh”, Tr. MIAN, 301 (2018), 108–118 | DOI | DOI | MR
[3] V. V. Zharinov, “Analiz v differentsialnykh algebrakh i modulyakh”, TMF, 196:1 (2018), 3–21 | DOI | DOI | MR
[4] V. V. Zharinov, “Analiz v nekommutativnykh algebrakh i modulyakh”, Tr. MIAN, 306 (2019), 100–111 | DOI | DOI | MR
[5] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer, New York, 1998 | MR
[6] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, 114, Springer, Berlin–Heidelberg–New York, 1963 | MR
[7] C. McLarty, Elementary Categories, Elementary Toposes, Clarendon Press, Oxford, 2005 | MR
[8] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR | MR | Zbl
[9] K. B. Marathe, G. Martucci, The Mathematical Foundations of Gauge Theories, Studies in Mathematical Physics, 5, North-Holland, Amsterdam, 1992 | MR
[10] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005 | MR | Zbl