A relay Mackey–Glass model with two delays
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 106-118
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the dynamics of the generalized Mackey–Glass equation with two delays using the large-parameter method. After a special exponential replacement of variables, a singularly perturbed equation is obtained, for which we construct a meaningful limit object, a differential–difference relay equation with two delays. We prove that the relay equation has a simple periodic solution with one interval on the period where the solution is positive. To illustrate the obtained result, we numerically analyze the original singularly perturbed equation, for which we find a solution near the periodic solution of the limit relay equation.
Keywords: differential–difference equation, Mackey–Glass equation, large parameter
Mots-clés : Poincaré operator.
@article{TMF_2020_203_1_a7,
     author = {M. M. Preobrazhenskaya},
     title = {A~relay {Mackey{\textendash}Glass} model with two delays},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {106--118},
     year = {2020},
     volume = {203},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a7/}
}
TY  - JOUR
AU  - M. M. Preobrazhenskaya
TI  - A relay Mackey–Glass model with two delays
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 106
EP  - 118
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a7/
LA  - ru
ID  - TMF_2020_203_1_a7
ER  - 
%0 Journal Article
%A M. M. Preobrazhenskaya
%T A relay Mackey–Glass model with two delays
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 106-118
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a7/
%G ru
%F TMF_2020_203_1_a7
M. M. Preobrazhenskaya. A relay Mackey–Glass model with two delays. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 106-118. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a7/

[1] M. C. Mackey, L. Glass, “Oscillation and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI

[2] L. Glass, M. Meki, Ot chasov k khaosu. Ritmy zhizni, Mir, M., 1991 | MR

[3] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Ob odnom podkhode k modelirovaniyu iskusstvennykh gennykh setei”, TMF, 194:3 (2018), 547–568 | DOI | DOI

[4] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Kvaziustoichivye struktury v koltsevykh gennykh setyakh”, Zh. vychisl. matem. i matem. fiz., 58:5 (2018), 682–704 | DOI | DOI

[5] L. Junges, J. A. C. Gallas, “Intricate routes to chaos in the Mackey–Glass delayed feedback system”, Phys. Lett. A, 376:30–31 (2012), 2109–2116 | DOI

[6] L. Berezansky, E. Braverman, “Mackey–Glass equation with variable coefficients”, Comput. Math. Appl., 51:1 (2006), 1–16 | DOI | MR

[7] H. Su, X. Ding, W. Li, “Numerical bifurcation control of Mackey–Glass system”, Appl. Math. Model., 35:7 (2011), 3460–3472 | DOI | MR

[8] E. Liz, E. Trofimchuk, S. Trofimchuk, “Mackey–Glass type delay differential equations near the boundary of absolute stability”, J. Math. Anal. Appl., 275:2 (2002), 747–760 | DOI | MR

[9] X.-M. Wu, J.-W. Li, H.-Q. Zhou, “A necessary and sufficient condition for the existence of positive periodic solutions of a model of hematopoiesis”, Comput. Math. Appl., 54:6 (2007), 840–849 | DOI | MR

[10] E. P. Kubyshkin, A. R. Moryakova, “Bifurkatsii periodicheskikh reshenii uravneniya Mekki–Glassa”, Model. i analiz inform. sistem, 23:6 (2016), 784–803 | DOI | MR

[11] P. Grassberger, I. Procaccia, “Measuring the strangeness of strange attractors”, Phys. D, 9:1–2 (1983), 189–208 | DOI | MR

[12] A. Namajūnas, K. Pyragas, A. Tamaševičius, “Stabilization of an unstable steady state in a Mackey–Glass system”, Phys. Lett. A, 204:3–4 (1995), 255–262 | DOI

[13] M. Tateno, A. Uchida, “Nonlinear dynamics and chaos synchronization in Mackey–Glass electronic circuits with multiple time-delayed feedback”, Nonlin. Theory Appl., IEICE, 3:2 (2012), 155–164 | DOI

[14] P. Amil, C. Cabeza, A. C. Marti, “Exact discrete-time implementation of the Mackey–Glass delayed model”, IEEE Trans. on Circuits and Systems II: Express Briefs, 62:7 (2015), 681–685 | DOI

[15] P. Amil, C. Cabeza, C. Masoller, A. Marti, “Organization and identification of solutions in the time-delayed Mackey–Glass model”, Chaos, 25:4 (2015), 043112, 8 pp., arXiv: 1412.6360 | DOI | MR

[16] E. M. Shahverdiev, R. A. Nuriev, R. H. Hashimov, K. A. Shore, “Chaos synchronization between the Mackey–Glass systems with multiple time delays”, Chaos, Solitons Fractals, 29:4 (2006), 854–861 | DOI | MR

[17] S. Sano, A. Uchida, S. Yoshimori, R. Roy, “Dual synchronization of chaos in Mackey–Glass electronic circuits with time-delayed feedback”, Phys. Rev. E, 75:1 (2007), 016207, 6 pp. | DOI

[18] A. Wan, J. Wei, “Bifurcation analysis of Mackey–Glass electronic circuits model with delayed feedback”, Nonlinear Dynam., 57:1–2 (2009), 85–96 | DOI | MR

[19] E. F. Mischenko, N. Kh. Rozov, Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR | Zbl | Zbl

[20] S. A. Kaschenko, “Statsionarnye rezhimy uravneniya, opisyvayuschego kolebaniya chislennosti nasekomykh”, Dokl. AN SSSR, 273:2 (1983), 328–330 | MR | Zbl

[21] S. A. Kashchenko, “Steady states of a delay differential equation of an insect population's dynamics”, Autom. Control Comput. Sci., 48:7 (2015), 445–457 | DOI

[22] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Rele s zapazdyvaniem i ego $C^1$-approksimatsiya”, Tr. MIAN, 216 (1997), 126–153 | MR | Zbl

[23] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Teoriya neklassicheskikh relaksatsionnykh kolebanii v singulyarno vozmuschennykh sistemakh s zapazdyvaniem”, Matem. sb., 205:6 (2014), 21–86 | DOI | DOI | MR | Zbl

[24] A. Yu. Kolesov, Yu. S. Kolesov, “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIAN, 199 (1993), 3–124 | MR | Zbl

[25] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Ob odnoi modifikatsii uravneniya Khatchinsona”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2099–2112 | DOI

[26] A. A. Kashchenko, “Multistability in a system of two coupled oscillators with delayed feedback”, J. Differ. Equ., 266:1 (2019), 562–579 | DOI | MR

[27] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3(423) (2015), 3–76 | DOI | DOI | MR | Zbl

[28] J. Schauder, “Der Fixpunktsatz in Funktionalraümen”, Studia Math., 2:1 (1930), 171–180 | DOI