Mots-clés : laminar–turbulent transition.
@article{TMF_2020_203_1_a6,
author = {J. O. Oloo and V. I. Shrira},
title = {Boundary layer collapses described by the~two-dimensional intermediate long-wave equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {91--105},
year = {2020},
volume = {203},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/}
}
TY - JOUR AU - J. O. Oloo AU - V. I. Shrira TI - Boundary layer collapses described by the two-dimensional intermediate long-wave equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 91 EP - 105 VL - 203 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/ LA - ru ID - TMF_2020_203_1_a6 ER -
J. O. Oloo; V. I. Shrira. Boundary layer collapses described by the two-dimensional intermediate long-wave equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/
[1] P. J. Schmidt, D. S. Henningson, D. F. Jankowski, Stability and Transition in Shear Flows, Applied Mathematical Sciences, 142, Springer, New York, 2002 | DOI | MR
[2] V. V. Voronovich, V. I. Shrira, Yu. A. Stepanyants, “Two-dimensional models for nonlinear vorticity waves in shear flows”, Stud. Appl. Math., 100:1 (1998), 1–32 | DOI | MR
[3] R. I. Joseph, “Solitary waves in a finite depth fluid”, J. Phys. A: Math. Gen., 10:12 (1977), L225–L228 | DOI | MR
[4] T. Kubota, D. R. S. Ko, L. D. Dobbs, “Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth”, J. Hydronautics, 12:4 (1978), 157–165 | DOI
[5] R. I. Joseph, R. Egri, “Multi-soliton solutions in a finite depth fluid”, J. Phys. A: Math. Gen., 11:5 (1978), L97–L102 | DOI
[6] Y. Matsuno, “Exact multi-soliton solution for nonlinear waves in a stratified fluid of finite depth”, Phys. Lett. A, 74:3–4 (1979), 233–235 | DOI | MR
[7] H. H. Chen, Y. C. Lee, “Internal-wave solitons of fluids with finite depth”, Phys. Rev. Lett., 43:4 (1979), 264–266 | DOI | MR
[8] V. I. Shrira, “O “pripoverkhnostnykh” volnakh verkhnego kvaziodnorodnogo sloya okeana”, Dokl. AN SSSR, 308:3 (1989), 732–736
[9] V. E. Zakharov, E. A. Kuznetsov, “O trekhmernykh solitonakh”, ZhETF, 66:2 (1974), 594–597
[10] A. I. D'yachenko, E. A. Kuznetsov, “Two-dimensional wave collapse in the boundary layer”, Phys. D, 87:1–4 (1995), 301–313 | DOI | MR
[11] D. E. Pelinovsky, V. I. Shrira, “Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows”, Phys. Lett. A, 206:3–4 (1995), 195–202 | DOI
[12] V. E. Zakharov, E. A. Kuznetsov, “Solitony i kollapsy: dva stsenariya evolyutsii nelineinykh volnovykh sistem”, UFN, 182:6 (2012), 569–592 | DOI
[13] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | Zbl
[14] S. Melkonian, S. A. Maslowe, “Two-dimensional amplitude evolution equations for nonlinear dispersive waves on thin films”, Phys. D, 34:1–2 (1989), 255–269 | DOI | MR
[15] K. Nozaki, “Vortex solitons of drift waves and anomalous diffusion”, Phys. Rev. Lett., 46:3 (1981), 184–187 | DOI
[16] V. I. Petviashvili, “Krasnoe pyatno Yupitera i dreifovyi soliton v plazme”, Pisma v ZhETF, 32:11 (1980), 632–635
[17] S. Toh, H. Iwasaki, T. Kawahara, “Two-dimensionally localized pulses of a nonlinear equation with dissipation and dispersion”, Phys. Rev. A, 40:9 (1989), 5472–5475 | DOI
[18] G. A. Gottwald, The Zakharov–Kuznetsov equation as a two-dimensional model for nonlinear Rossby waves, arXiv: nlin/0312009
[19] D. E. Pelinovskii, Yu. A. Stepanyants, “Samofokusirovochnaya neustoichivost nelineinykh ploskikh voln v sdvigovykh potokakh”, ZhETF, 105:6 (1994), 1635–1652
[20] D. G. Gaidashev, S. K. Zhdanov, “On the transverse instability of the two-dimensional Benjamin–Ono solitons”, Phys. Fluids, 16:6 (2004), 1915–1921 | DOI | MR
[21] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl
[22] E. A. Kuznetsov, “Stability criterion for solitons of the Zakharov–Kuznetsov-type equations”, Phys. Lett. A, 382:31 (2018), 2049–2051 | DOI | MR
[23] M. C. Jorge, G. Cruz-Pacheco, L. Mier-y-Teran-Romero, N. F. Smyth, “Evolution of two-dimensional lump nanosolitons for the Zakharov–Kuznetsov and electromigration equations”, Chaos, 15:3 (2005), 037104, 13 pp. | DOI | MR
[24] S. A. Orszag, “Numerical methods for the simulation of turbulence”, Phys. Fluids, 12:12 (1969), II-250–II-258 | DOI
[25] D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equations, Springer, Dordrecht, 2009 | DOI | MR
[26] Y. S. Kachanov, “Physical mechanisms of laminar-boundary-layer transition”, Ann. Rev. Fluid Mech., 26:1 (1994), 411–482 | DOI | MR