Boundary layer collapses described by the~two-dimensional intermediate long-wave equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 91-105
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the nonlinear dynamics of localized perturbations of a confined generic boundary-layer shear flow in the framework of the essentially two-dimensional generalization of the intermediate long-wave (2d-ILW) equation. The 2d-ILW equation was originally derived to describe nonlinear evolution of boundary layer perturbations in a fluid confined between two parallel planes. The distance between the planes is characterized by a dimensionless parameter $D$. In the limits of large and small $D$, the 2d-ILW equation respectively tends to the 2d Benjamin–Ono and 2d Zakharov–Kuznetsov equations. We show that localized initial perturbations of any given shape collapse, i.e., blow up in a finite time and form a point singularity, if the Hamiltonian is negative, which occurs if the perturbation amplitude exceeds a certain threshold specific for each particular shape of the initial perturbation. For axisymmetric Gaussian and Lorentzian initial perturbations of amplitude $a$ and width $\sigma$, we derive explicit nonlinear neutral stability curves that separate the domains of perturbation collapse and decay on the plane $(a,\sigma)$ for various values of $D$. The amplitude threshold $a$ increases as $D$ and $\sigma$ decrease and tends to infinity at $D\to0$. The 2d-ILW equation also admits steady axisymmetric solitary wave solutions whose Hamiltonian is always negative; they collapse for all $D$ except $D=0$. But the equation itself has not been proved for small $D$. Direct numerical simulations of the 2d-ILW equation with Gaussian and Lorentzian initial conditions show that initial perturbations with an amplitude exceeding the found threshold collapse in a self-similar manner, while perturbations with a below-threshold amplitude decay.
Keywords:
boundary layer instability, nonlinear evolution equation, collapse,
singularity formation
Mots-clés : laminar–turbulent transition.
Mots-clés : laminar–turbulent transition.
@article{TMF_2020_203_1_a6,
author = {J. O. Oloo and V. I. Shrira},
title = {Boundary layer collapses described by the~two-dimensional intermediate long-wave equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {91--105},
publisher = {mathdoc},
volume = {203},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/}
}
TY - JOUR AU - J. O. Oloo AU - V. I. Shrira TI - Boundary layer collapses described by the~two-dimensional intermediate long-wave equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 91 EP - 105 VL - 203 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/ LA - ru ID - TMF_2020_203_1_a6 ER -
%0 Journal Article %A J. O. Oloo %A V. I. Shrira %T Boundary layer collapses described by the~two-dimensional intermediate long-wave equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 91-105 %V 203 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/ %G ru %F TMF_2020_203_1_a6
J. O. Oloo; V. I. Shrira. Boundary layer collapses described by the~two-dimensional intermediate long-wave equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/