Boundary layer collapses described by the two-dimensional intermediate long-wave equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 91-105
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the nonlinear dynamics of localized perturbations of a confined generic boundary-layer shear flow in the framework of the essentially two-dimensional generalization of the intermediate long-wave (2d-ILW) equation. The 2d-ILW equation was originally derived to describe nonlinear evolution of boundary layer perturbations in a fluid confined between two parallel planes. The distance between the planes is characterized by a dimensionless parameter $D$. In the limits of large and small $D$, the 2d-ILW equation respectively tends to the 2d Benjamin–Ono and 2d Zakharov–Kuznetsov equations. We show that localized initial perturbations of any given shape collapse, i.e., blow up in a finite time and form a point singularity, if the Hamiltonian is negative, which occurs if the perturbation amplitude exceeds a certain threshold specific for each particular shape of the initial perturbation. For axisymmetric Gaussian and Lorentzian initial perturbations of amplitude $a$ and width $\sigma$, we derive explicit nonlinear neutral stability curves that separate the domains of perturbation collapse and decay on the plane $(a,\sigma)$ for various values of $D$. The amplitude threshold $a$ increases as $D$ and $\sigma$ decrease and tends to infinity at $D\to0$. The 2d-ILW equation also admits steady axisymmetric solitary wave solutions whose Hamiltonian is always negative; they collapse for all $D$ except $D=0$. But the equation itself has not been proved for small $D$. Direct numerical simulations of the 2d-ILW equation with Gaussian and Lorentzian initial conditions show that initial perturbations with an amplitude exceeding the found threshold collapse in a self-similar manner, while perturbations with a below-threshold amplitude decay.
Keywords: boundary layer instability, nonlinear evolution equation, collapse, singularity formation
Mots-clés : laminar–turbulent transition.
@article{TMF_2020_203_1_a6,
     author = {J. O. Oloo and V. I. Shrira},
     title = {Boundary layer collapses described by the~two-dimensional intermediate long-wave equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {91--105},
     year = {2020},
     volume = {203},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/}
}
TY  - JOUR
AU  - J. O. Oloo
AU  - V. I. Shrira
TI  - Boundary layer collapses described by the two-dimensional intermediate long-wave equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 91
EP  - 105
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/
LA  - ru
ID  - TMF_2020_203_1_a6
ER  - 
%0 Journal Article
%A J. O. Oloo
%A V. I. Shrira
%T Boundary layer collapses described by the two-dimensional intermediate long-wave equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 91-105
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/
%G ru
%F TMF_2020_203_1_a6
J. O. Oloo; V. I. Shrira. Boundary layer collapses described by the two-dimensional intermediate long-wave equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a6/

[1] P. J. Schmidt, D. S. Henningson, D. F. Jankowski, Stability and Transition in Shear Flows, Applied Mathematical Sciences, 142, Springer, New York, 2002 | DOI | MR

[2] V. V. Voronovich, V. I. Shrira, Yu. A. Stepanyants, “Two-dimensional models for nonlinear vorticity waves in shear flows”, Stud. Appl. Math., 100:1 (1998), 1–32 | DOI | MR

[3] R. I. Joseph, “Solitary waves in a finite depth fluid”, J. Phys. A: Math. Gen., 10:12 (1977), L225–L228 | DOI | MR

[4] T. Kubota, D. R. S. Ko, L. D. Dobbs, “Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth”, J. Hydronautics, 12:4 (1978), 157–165 | DOI

[5] R. I. Joseph, R. Egri, “Multi-soliton solutions in a finite depth fluid”, J. Phys. A: Math. Gen., 11:5 (1978), L97–L102 | DOI

[6] Y. Matsuno, “Exact multi-soliton solution for nonlinear waves in a stratified fluid of finite depth”, Phys. Lett. A, 74:3–4 (1979), 233–235 | DOI | MR

[7] H. H. Chen, Y. C. Lee, “Internal-wave solitons of fluids with finite depth”, Phys. Rev. Lett., 43:4 (1979), 264–266 | DOI | MR

[8] V. I. Shrira, “O “pripoverkhnostnykh” volnakh verkhnego kvaziodnorodnogo sloya okeana”, Dokl. AN SSSR, 308:3 (1989), 732–736

[9] V. E. Zakharov, E. A. Kuznetsov, “O trekhmernykh solitonakh”, ZhETF, 66:2 (1974), 594–597

[10] A. I. D'yachenko, E. A. Kuznetsov, “Two-dimensional wave collapse in the boundary layer”, Phys. D, 87:1–4 (1995), 301–313 | DOI | MR

[11] D. E. Pelinovsky, V. I. Shrira, “Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows”, Phys. Lett. A, 206:3–4 (1995), 195–202 | DOI

[12] V. E. Zakharov, E. A. Kuznetsov, “Solitony i kollapsy: dva stsenariya evolyutsii nelineinykh volnovykh sistem”, UFN, 182:6 (2012), 569–592 | DOI

[13] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | Zbl

[14] S. Melkonian, S. A. Maslowe, “Two-dimensional amplitude evolution equations for nonlinear dispersive waves on thin films”, Phys. D, 34:1–2 (1989), 255–269 | DOI | MR

[15] K. Nozaki, “Vortex solitons of drift waves and anomalous diffusion”, Phys. Rev. Lett., 46:3 (1981), 184–187 | DOI

[16] V. I. Petviashvili, “Krasnoe pyatno Yupitera i dreifovyi soliton v plazme”, Pisma v ZhETF, 32:11 (1980), 632–635

[17] S. Toh, H. Iwasaki, T. Kawahara, “Two-dimensionally localized pulses of a nonlinear equation with dissipation and dispersion”, Phys. Rev. A, 40:9 (1989), 5472–5475 | DOI

[18] G. A. Gottwald, The Zakharov–Kuznetsov equation as a two-dimensional model for nonlinear Rossby waves, arXiv: nlin/0312009

[19] D. E. Pelinovskii, Yu. A. Stepanyants, “Samofokusirovochnaya neustoichivost nelineinykh ploskikh voln v sdvigovykh potokakh”, ZhETF, 105:6 (1994), 1635–1652

[20] D. G. Gaidashev, S. K. Zhdanov, “On the transverse instability of the two-dimensional Benjamin–Ono solitons”, Phys. Fluids, 16:6 (2004), 1915–1921 | DOI | MR

[21] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[22] E. A. Kuznetsov, “Stability criterion for solitons of the Zakharov–Kuznetsov-type equations”, Phys. Lett. A, 382:31 (2018), 2049–2051 | DOI | MR

[23] M. C. Jorge, G. Cruz-Pacheco, L. Mier-y-Teran-Romero, N. F. Smyth, “Evolution of two-dimensional lump nanosolitons for the Zakharov–Kuznetsov and electromigration equations”, Chaos, 15:3 (2005), 037104, 13 pp. | DOI | MR

[24] S. A. Orszag, “Numerical methods for the simulation of turbulence”, Phys. Fluids, 12:12 (1969), II-250–II-258 | DOI

[25] D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equations, Springer, Dordrecht, 2009 | DOI | MR

[26] Y. S. Kachanov, “Physical mechanisms of laminar-boundary-layer transition”, Ann. Rev. Fluid Mech., 26:1 (1994), 411–482 | DOI | MR