A possibility of realizing the Landau–Hopf scenario in the problem of tube oscillations under the action of a fluid flow
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 78-90
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a boundary-value problem for a quasilinear partial differential equation describing tube oscillations under the action of a fluid flow. We show that the well-known Landau–Hopf scenario of transition to turbulence is realized in the considered evolution boundary-value problem with a suitable choice of the governing parameter. To study the problem, we use the theory of infinite-dimensional dynamical systems. In particular, we use the method of integral manifolds, normal forms, and also asymptotic methods of analysis.
Keywords: nonlinear evolution boundary-value problem, stability, asymptotic formula.
Mots-clés : bifurcation, invariant torus
@article{TMF_2020_203_1_a5,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {A~possibility of realizing {the~Landau{\textendash}Hopf} scenario in the~problem of tube oscillations under the~action of a~fluid flow},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--90},
     year = {2020},
     volume = {203},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a5/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - A possibility of realizing the Landau–Hopf scenario in the problem of tube oscillations under the action of a fluid flow
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 78
EP  - 90
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a5/
LA  - ru
ID  - TMF_2020_203_1_a5
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T A possibility of realizing the Landau–Hopf scenario in the problem of tube oscillations under the action of a fluid flow
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 78-90
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a5/
%G ru
%F TMF_2020_203_1_a5
A. N. Kulikov; D. A. Kulikov. A possibility of realizing the Landau–Hopf scenario in the problem of tube oscillations under the action of a fluid flow. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 78-90. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a5/

[1] L. D. Landau, “K problemam turbulentnosti”, Dokl. AN SSSR, 44:8 (1944), 339–342 | MR | Zbl

[2] E. Hopf, “A mathematical example displaying features of turbulence”, Commun. Pure. Appl. Math., 1:4 (1948), 303–322 | DOI | MR

[3] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1988 | MR | Zbl

[4] G. R. Sell, “Resonance and difurcations in Hopf–Landau dynamical systems”, Dynamics and Turbulence, Pitman, Boston, MA, 1983, 305–313 | MR

[5] H. W. Broer, F. Dumortier, S. J. van Stern, F. Takens, Structures in Dynamics, Studies in Mathematical Physics, 2, North-Holland, Amsterdam, 1991 | MR

[6] D. Ruele, F. Takens, “On the nature of turbulence”, Commun. Math. Phys., 20:3 (1971), 167–192 | DOI | MR

[7] D. Ruele, F. Takens, “On the nature of turbulence”, Commun. Math. Phys., 23:4 (1971), 343–344 | DOI | MR

[8] A. N. Kulikov, “Attraktory dvukh kraevykh zadach dlya modifitsirovannogo nelineinogo telegrafnogo uravneniya”, Nelineinaya dinam., 4:1 (2008), 57–68

[9] A. N. Kulikov, “O realizatsii stsenariya Landau–Khopfa perekhoda k turbulentnosti v nekotorykh zadachakh teorii uprugoi ustoichivosti”, Differents. uravneniya, 48:9 (2012), 1278–1291 | DOI | MR

[10] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Razvitie turbulentnosti po Landau v modeli multiplikator-akselrator”, Dokl. RAN, 42:6 (2008), 739–743 | MR | Zbl

[11] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Mnogolikii khaos, Fizmatlit, M., 2012

[12] J. M. T. Thompson, Instabilities and Catastrophes in Science and Engineering, John Wiley and Sons, New York, 1982 | MR

[13] P. J. Holmes, J. E. Marsden, “Bifurcation to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis”, J. Sound Vibration, 53:4 (1977), 471–503 | DOI | MR

[14] P. J. Holmes, J. E. Marsden, “Bifurcation of dynamical systems and nonlinear oscillations in engineering systems”, Nonlinear Partial Differential Equation and Application, Lectures Notes in Mathematics, 648, Springer, Berlin, 1978, 163–206 | DOI | MR

[15] M. P. Paidoussis, V. T. Issid, “Dynamics of flexible slender cylinder in axial flow”, J. Sound Vibration, 33:3 (1974), 267–294 | DOI

[16] I. Segal, “Non-linear semigroups”, Ann. Math., 78:2 (1963), 339–364 | DOI | MR

[17] S. Ya. Yakubov, “Razreshimost zadachi Koshi dlya abstraktnykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozhenii”, Tr. MMO, 23 (1970), 37–60 | MR | Zbl

[18] P. E. Sobolevskii, “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. MMO, 10 (1967), 297–350 | MR | Zbl

[19] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR | Zbl

[20] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[21] A. N. Kulikov, “O bifurkatsiyakh invariantnykh torov”, Issledovanie po ustoichivosti i teorii kolebanii, Mezhvuz. matem. sbornik nauchnykh trudov, Yarosl. gos. un-t, Yaroslavl, 1983, 112–117

[22] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differents. uravneniya, 39:5 (2003), 584–601 | MR

[23] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differents. uravneniya, 39:6 (2003), 738–753 | DOI | MR

[24] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[25] A. Yu. Kolesov, A. N. Kulikov, Invariantnye tory nelineinykh volnovykh uravnenii, Izd-vo YarGU im. P. G. Demidova, Yaroslavl, 2003

[26] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR