Asymptotic behavior of rapidly oscillating solutions of the modified
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 40-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the modernized Camassa–Holm equation with periodic boundary conditions. The quadratic nonlinearities in this equation differ substantially from the nonlinearities in the classical Camassa–Holm equation but have all its main properties in a certain sense. We study the so-called nonregular solutions, i.e., those that are rapidly oscillating in the spatial variable. We investigate the problem of constructing solutions asymptotically periodic in time and more complicated solutions whose leading terms of the asymptotic expansion are multifrequency. We study the problem of the possibility of a compact form of these asymptotic expansions and the problem of reducing the construction of the leading terms of the asymptotic expansions to the analysis of the solutions of special nonlinear boundary-value problems. We show that this is possible only for the classical Camassa–Holm equation.
Keywords: boundary-value problem, asymptotic expansion, regular solution, nonregular solution.
Mots-clés : bifurcation
@article{TMF_2020_203_1_a3,
     author = {S. A. Kashchenko},
     title = {Asymptotic behavior of rapidly oscillating solutions of the~modified},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {40--55},
     year = {2020},
     volume = {203},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a3/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Asymptotic behavior of rapidly oscillating solutions of the modified
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 40
EP  - 55
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a3/
LA  - ru
ID  - TMF_2020_203_1_a3
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Asymptotic behavior of rapidly oscillating solutions of the modified
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 40-55
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a3/
%G ru
%F TMF_2020_203_1_a3
S. A. Kashchenko. Asymptotic behavior of rapidly oscillating solutions of the modified. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 40-55. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a3/

[1] A. S. Fokas, B. Fuchssteiner, “On the structure of symplectic operators and hereditary symmetries”, Lett. Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR

[2] A. S. Fokas, B. Fuchssteiner, “Symplectic structure, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR

[3] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR

[4] R. Camassa, D. D. Holm, J. M. Hyman, “A new integrable shallow water equation”, Adv. Appl. Mech., 31 (1994), 1–31 | DOI

[5] M. Lakshmanan, “Integrable nonlinear wave equations and possible connections to tsunami dynamics”, Tsunami and Nonlinear Waves, ed. A. Kundu, Springer, Berlin, 2007, 31–49 | DOI | MR

[6] R. S. Johnson, “Camassa–Holm, Korteweg–de Vries and related models for water waves”, J. Fluid Mech., 455 (2002), 63–82 | DOI | MR

[7] A. Constantine, D. Lannes, “The hydrodynamical relevance of the Camassa–Holm and Degaperis–Procesi equation”, Arch. Ration. Mech. Anal., 192:1 (2009), 165–186 | DOI | MR

[8] F. Dias, P. Milewski, “On the fully-nonlinear shallow-water generalized Serre equations”, Phys. Lett. A, 374:8 (2010), 1049–1053 | DOI

[9] R. Bhatt, A. V. Mikhailov, On the inconsistency of the Camassa–Holm model with the shallow water theory, arXiv: 1010.1932

[10] S. A. Kaschenko, “Asimptotiki regulyarnykh reshenii v zadache Kamassy–Kholma”, Zhurn. vychisl. matem. i matem. fiz., 60:2 (2020), 86–99

[11] S. A. Kaschenko, “Regulyarnye i neregulyarnye resheniya v zadache o dislokatsiyakh v tverdom tele”, TMF, 195:3 (2018), 362–380 | DOI | DOI

[12] N. A. Kudryashov, “On “new travelling wave solutions” of the KdV and KdV–Burgers equations”, Commun. Nonlinear Sci. Numer. Simul., 14:5 (2009), 1891–1900 | DOI | MR

[13] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Intellekt, Dolgoprudnyi, 2010

[14] S. A. Kaschenko, “Bifurkatsii v uravnenii Kuramoto–Sivashinskogo”, TMF, 192:1 (2017), 23–40 | DOI | DOI | MR

[15] S. A. Kaschenko, “Normalnaya forma dlya uravneniya Kortevega–de Friza–Byurgersa”, Dokl. RAN, 468:4 (2016), 383–386 | DOI | MR