Mots-clés : bifurcation
@article{TMF_2020_203_1_a3,
author = {S. A. Kashchenko},
title = {Asymptotic behavior of rapidly oscillating solutions of the~modified},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {40--55},
year = {2020},
volume = {203},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a3/}
}
S. A. Kashchenko. Asymptotic behavior of rapidly oscillating solutions of the modified. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 40-55. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a3/
[1] A. S. Fokas, B. Fuchssteiner, “On the structure of symplectic operators and hereditary symmetries”, Lett. Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR
[2] A. S. Fokas, B. Fuchssteiner, “Symplectic structure, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR
[3] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR
[4] R. Camassa, D. D. Holm, J. M. Hyman, “A new integrable shallow water equation”, Adv. Appl. Mech., 31 (1994), 1–31 | DOI
[5] M. Lakshmanan, “Integrable nonlinear wave equations and possible connections to tsunami dynamics”, Tsunami and Nonlinear Waves, ed. A. Kundu, Springer, Berlin, 2007, 31–49 | DOI | MR
[6] R. S. Johnson, “Camassa–Holm, Korteweg–de Vries and related models for water waves”, J. Fluid Mech., 455 (2002), 63–82 | DOI | MR
[7] A. Constantine, D. Lannes, “The hydrodynamical relevance of the Camassa–Holm and Degaperis–Procesi equation”, Arch. Ration. Mech. Anal., 192:1 (2009), 165–186 | DOI | MR
[8] F. Dias, P. Milewski, “On the fully-nonlinear shallow-water generalized Serre equations”, Phys. Lett. A, 374:8 (2010), 1049–1053 | DOI
[9] R. Bhatt, A. V. Mikhailov, On the inconsistency of the Camassa–Holm model with the shallow water theory, arXiv: 1010.1932
[10] S. A. Kaschenko, “Asimptotiki regulyarnykh reshenii v zadache Kamassy–Kholma”, Zhurn. vychisl. matem. i matem. fiz., 60:2 (2020), 86–99
[11] S. A. Kaschenko, “Regulyarnye i neregulyarnye resheniya v zadache o dislokatsiyakh v tverdom tele”, TMF, 195:3 (2018), 362–380 | DOI | DOI
[12] N. A. Kudryashov, “On “new travelling wave solutions” of the KdV and KdV–Burgers equations”, Commun. Nonlinear Sci. Numer. Simul., 14:5 (2009), 1891–1900 | DOI | MR
[13] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Intellekt, Dolgoprudnyi, 2010
[14] S. A. Kaschenko, “Bifurkatsii v uravnenii Kuramoto–Sivashinskogo”, TMF, 192:1 (2017), 23–40 | DOI | DOI | MR
[15] S. A. Kaschenko, “Normalnaya forma dlya uravneniya Kortevega–de Friza–Byurgersa”, Dokl. RAN, 468:4 (2016), 383–386 | DOI | MR