Asymptotic analysis of a~multiferroic model
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 26-39
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a system of nonlinear autonomous differential equations that describe the orientation of the antiferromagnetic vector in a multiferroic film and find the conditions for the existence of spatially modulated structures of the cycloid type. We investigate the stability of such structures under spatial perturbations.
Keywords:
multiferroics, nonlinear equation, variational problem, small parameter,
asymptotics.
@article{TMF_2020_203_1_a2,
author = {L. A. Kalyakin and A. K. Zvezdin and Z. V. Gareeva},
title = {Asymptotic analysis of a~multiferroic model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {26--39},
publisher = {mathdoc},
volume = {203},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a2/}
}
TY - JOUR AU - L. A. Kalyakin AU - A. K. Zvezdin AU - Z. V. Gareeva TI - Asymptotic analysis of a~multiferroic model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 26 EP - 39 VL - 203 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a2/ LA - ru ID - TMF_2020_203_1_a2 ER -
L. A. Kalyakin; A. K. Zvezdin; Z. V. Gareeva. Asymptotic analysis of a~multiferroic model. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 26-39. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a2/