A classification algorithm for integrable two-dimensional lattices
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 161-173
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of the integrable classification of nonlinear lattices depending on one discrete and two continuous variables. By integrability, we mean the presence of reductions of a chain to a system of hyperbolic equations of an arbitrarily high order that are integrable in the Darboux sense. Darboux integrability admits a remarkable algebraic interpretation: the Lie–Rinehart algebras related to both characteristic directions corresponding to the reduced system of hyperbolic equations must have a finite dimension. We discuss a classification algorithm based on the properties of the characteristic algebra and present some classification results. We find new examples of integrable equations.
Keywords: two-dimensional integrable lattice, $x$-integral, integrable reduction, cutoff condition, open lattice, Darboux-integrable system, characteristic Lie algebra.
@article{TMF_2020_203_1_a11,
     author = {I. T. Habibullin and M. N. Kuznetsova},
     title = {A~classification algorithm for integrable two-dimensional lattices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {161--173},
     year = {2020},
     volume = {203},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - M. N. Kuznetsova
TI  - A classification algorithm for integrable two-dimensional lattices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 161
EP  - 173
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/
LA  - ru
ID  - TMF_2020_203_1_a11
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A M. N. Kuznetsova
%T A classification algorithm for integrable two-dimensional lattices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 161-173
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/
%G ru
%F TMF_2020_203_1_a11
I. T. Habibullin; M. N. Kuznetsova. A classification algorithm for integrable two-dimensional lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 161-173. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/

[1] V. E. Adler, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl

[2] A. V. Mikhailov, R. I. Yamilov, “Towards classification of $(2+1)$-dimensional integrable equations. Integrability conditions: I”, J. Phys. A: Math. Gen., 31:31 (1998), 6707–6715 | DOI | MR

[3] L. V. Bogdanov, B. G. Konopelchenko, “Grassmannians $\operatorname{Gr}(N-1,N+1)$, closed differential $N-1$ forms and $N$-dimensional integrable systems”, J. Phys. A: Math. Theor., 46:8 (2013), 085201, 17 pp. | DOI | MR

[4] M. V. Pavlov, Z. Popowicz, “On integrability of a special class of two-component ${(2+1)}$-dimensional hydrodynamic-type systems”, SIGMA, 5 (2009), 011, 10 pp. | DOI | MR | Zbl

[5] A. K. Pogrebkov, “Kommutatornye tozhdestva na assotsiativnykh algebrakh i integriruemost nelineinykh evolyutsionnykh uravnenii”, TMF, 154:3 (2008), 477–491 | DOI | DOI | MR | Zbl

[6] M. Mañas, L. M. Alonso, C. Álvarez-Fernández, “The multicomponent 2D Toda hierarchy: discrete flows and string equations”, Inverse Probl., 25:6 (2009), 065007, 31 pp. | DOI | MR

[7] V. E. Zakharov, S. V. Manakov, “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. analiz i ego pril., 19:2 (1985), 11–25 | DOI | MR | Zbl

[8] I. S. Krasil'shchik, A. Sergyeyev, O. I. Morozov, “Infinitely many nonlocal conservation laws for the $ABC$ equation with $A+B+C\neq 0$”, Calc. Var. Partial Differ. Equ., 55:5 (2016), 123, 12 pp. | DOI | MR

[9] E. V. Ferapontov, “Preobrazovaniya Laplasa sistem gidrodinamicheskogo tipa v invariantakh Rimana”, TMF, 110:1 (1997), 86–97 | DOI | DOI | MR | Zbl

[10] E. V. Ferapontov, K. R. Khusnutdinova, “On the integrability of $(2+1)$-dimensional quasilinear systems”, Commun. Math. Phys., 248:1 (2004), 187–206 | DOI | MR

[11] E. V. Ferapontov, K. R. Khusnutdinova, M. V. Pavlov, “Klassifikatsiya integriruemykh $(2+1)$-mernykh kvazilineinykh ierarkhii”, TMF, 144:1 (2005), 35–43 | DOI | DOI | MR | Zbl

[12] E. V. Ferapontov, K. R. Khusnutdinova, S. P. Tsarev, “On a class of three-dimensional integrable Lagrangians”, Commun. Math. Phys., 261:1 (2006), 225–243 | DOI | MR

[13] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint, Bashkirskii filial AN SSSR, Ufa, 1981

[14] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Kharakteristicheskie koltsa Li i nelineinye integriruemye uravneniya, In-t kompyut. issled., M.–Izhevsk, 2012

[15] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, “Kharakteristicheskie koltsa Li i integriruemye modeli matematicheskoi fiziki”, Ufimsk. matem. zhurn., 4:3 (2012), 17–85 | MR

[16] S. V. Smirnov, “Integriruemost po Darbu diskretnykh dvumerizovannykh tsepochek Tody”, TMF, 182:2 (2015), 231–255 | DOI | DOI | MR

[17] S. V. Smirnov, “Poludiskretnye tsepochki Tody”, TMF, 172:3 (2012), 387–402 | DOI | DOI | MR

[18] I. T. Khabibullin, A. Pekan, “Kharakteristicheskaya algebra Li i klassifikatsiya poludiskretnykh modelei”, TMF, 151:3 (2007), 413–423 | DOI | DOI | MR | Zbl

[19] K. Zheltukhin, N. Zheltukhina, E. Bilen, “On a class of Darboux-integrable semidiscrete equations”, Adv. Differ. Equ., 2017 (2017), 182, 14 pp. | DOI | MR

[20] K. Zheltukhin, N. Zheltukhina, “Semi-discrete hyperbolic equations admitting five dimensional characteristic $x$-ring”, J. Nonlinear Math. Phys., 23:3 (2016), 351–367 | DOI | MR

[21] G. Gubbiotti, C. Scimiterna, R. I. Yamilov, “Darboux integrability of trapezoidal $H^4$ and $H^6$ families of lattice equations II: General solutions”, SIGMA, 14 (2018), 008, 51 pp., arXiv: 1704.05805 | DOI | MR

[22] I. T. Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for $(2+1)$-dimensional lattices”, Phys. Scr., 87:6 (2013), 065005, 5 pp., arXiv: 1208.5302 | DOI | Zbl

[23] I. T. Habibullin, M. N. Poptsova, “Classification of a subclass of two-dimensional lattices via characteristic Lie rings”, SIGMA, 13 (2017), 073, 26 pp. | DOI | MR

[24] M. N. Poptsova, I. T. Khabibullin, “Algebraicheskie svoistva kvazilineinykh dvumerizovannykh tsepochek, svyazannye s integriruemostyu”, Ufimsk. matem. zhurn., 10:3 (2018), 89–109 | DOI

[25] M. N. Poptsova, “Simmetrii odnoi periodicheskoi tsepochki”, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 162 (2019), 80–84

[26] M. N. Kuznetsova, “Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras”, Ufimsk. matem. zhurn., 11:3 (2019), 110–131 | DOI

[27] A. B. Shabat, R. I. Yamilov, “To a transformation theory of two-dimensional integrable systems”, Phys. Lett. A, 227:1–2 (1997), 15–23 | DOI | MR

[28] G. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR

[29] D. Millionshchikov, “Lie algebras of slow growth and Klein–Gordon PDE”, Algebr. Represent. Theory, 21:5 (2018), 1037–1069 | DOI | MR

[30] A. V. Zhiber, O. S. Kostrigina, “Tochno integriruemye modeli volnovykh protsessov”, Vestn. UGATU, 9:7(25) (2007), 83–89

[31] A. B. Shabat, “Higher symmetries of two-dimensional lattices”, Phys. Lett. A, 200:2 (1995), 121–133 | DOI | MR