A~classification algorithm for integrable two-dimensional lattices
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 161-173
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of the integrable classification of nonlinear lattices depending on one discrete and two continuous variables. By integrability, we mean the presence of reductions of a chain to a system of hyperbolic equations of an arbitrarily high order that are integrable in the Darboux sense. Darboux integrability admits a remarkable algebraic interpretation: the Lie–Rinehart algebras related to both characteristic directions corresponding to the reduced system of hyperbolic equations must have a finite dimension. We discuss a classification algorithm based on the properties of the characteristic algebra and present some classification results. We find new examples of integrable equations.
Keywords:
two-dimensional integrable lattice, $x$-integral, integrable reduction,
cutoff condition, open lattice, Darboux-integrable system,
characteristic Lie algebra.
@article{TMF_2020_203_1_a11,
author = {I. T. Habibullin and M. N. Kuznetsova},
title = {A~classification algorithm for integrable two-dimensional lattices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {161--173},
publisher = {mathdoc},
volume = {203},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/}
}
TY - JOUR AU - I. T. Habibullin AU - M. N. Kuznetsova TI - A~classification algorithm for integrable two-dimensional lattices JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 161 EP - 173 VL - 203 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/ LA - ru ID - TMF_2020_203_1_a11 ER -
I. T. Habibullin; M. N. Kuznetsova. A~classification algorithm for integrable two-dimensional lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 161-173. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/