@article{TMF_2020_203_1_a11,
author = {I. T. Habibullin and M. N. Kuznetsova},
title = {A~classification algorithm for integrable two-dimensional lattices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {161--173},
year = {2020},
volume = {203},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/}
}
TY - JOUR AU - I. T. Habibullin AU - M. N. Kuznetsova TI - A classification algorithm for integrable two-dimensional lattices JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 161 EP - 173 VL - 203 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/ LA - ru ID - TMF_2020_203_1_a11 ER -
I. T. Habibullin; M. N. Kuznetsova. A classification algorithm for integrable two-dimensional lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 161-173. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a11/
[1] V. E. Adler, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl
[2] A. V. Mikhailov, R. I. Yamilov, “Towards classification of $(2+1)$-dimensional integrable equations. Integrability conditions: I”, J. Phys. A: Math. Gen., 31:31 (1998), 6707–6715 | DOI | MR
[3] L. V. Bogdanov, B. G. Konopelchenko, “Grassmannians $\operatorname{Gr}(N-1,N+1)$, closed differential $N-1$ forms and $N$-dimensional integrable systems”, J. Phys. A: Math. Theor., 46:8 (2013), 085201, 17 pp. | DOI | MR
[4] M. V. Pavlov, Z. Popowicz, “On integrability of a special class of two-component ${(2+1)}$-dimensional hydrodynamic-type systems”, SIGMA, 5 (2009), 011, 10 pp. | DOI | MR | Zbl
[5] A. K. Pogrebkov, “Kommutatornye tozhdestva na assotsiativnykh algebrakh i integriruemost nelineinykh evolyutsionnykh uravnenii”, TMF, 154:3 (2008), 477–491 | DOI | DOI | MR | Zbl
[6] M. Mañas, L. M. Alonso, C. Álvarez-Fernández, “The multicomponent 2D Toda hierarchy: discrete flows and string equations”, Inverse Probl., 25:6 (2009), 065007, 31 pp. | DOI | MR
[7] V. E. Zakharov, S. V. Manakov, “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. analiz i ego pril., 19:2 (1985), 11–25 | DOI | MR | Zbl
[8] I. S. Krasil'shchik, A. Sergyeyev, O. I. Morozov, “Infinitely many nonlocal conservation laws for the $ABC$ equation with $A+B+C\neq 0$”, Calc. Var. Partial Differ. Equ., 55:5 (2016), 123, 12 pp. | DOI | MR
[9] E. V. Ferapontov, “Preobrazovaniya Laplasa sistem gidrodinamicheskogo tipa v invariantakh Rimana”, TMF, 110:1 (1997), 86–97 | DOI | DOI | MR | Zbl
[10] E. V. Ferapontov, K. R. Khusnutdinova, “On the integrability of $(2+1)$-dimensional quasilinear systems”, Commun. Math. Phys., 248:1 (2004), 187–206 | DOI | MR
[11] E. V. Ferapontov, K. R. Khusnutdinova, M. V. Pavlov, “Klassifikatsiya integriruemykh $(2+1)$-mernykh kvazilineinykh ierarkhii”, TMF, 144:1 (2005), 35–43 | DOI | DOI | MR | Zbl
[12] E. V. Ferapontov, K. R. Khusnutdinova, S. P. Tsarev, “On a class of three-dimensional integrable Lagrangians”, Commun. Math. Phys., 261:1 (2006), 225–243 | DOI | MR
[13] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint, Bashkirskii filial AN SSSR, Ufa, 1981
[14] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Kharakteristicheskie koltsa Li i nelineinye integriruemye uravneniya, In-t kompyut. issled., M.–Izhevsk, 2012
[15] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, “Kharakteristicheskie koltsa Li i integriruemye modeli matematicheskoi fiziki”, Ufimsk. matem. zhurn., 4:3 (2012), 17–85 | MR
[16] S. V. Smirnov, “Integriruemost po Darbu diskretnykh dvumerizovannykh tsepochek Tody”, TMF, 182:2 (2015), 231–255 | DOI | DOI | MR
[17] S. V. Smirnov, “Poludiskretnye tsepochki Tody”, TMF, 172:3 (2012), 387–402 | DOI | DOI | MR
[18] I. T. Khabibullin, A. Pekan, “Kharakteristicheskaya algebra Li i klassifikatsiya poludiskretnykh modelei”, TMF, 151:3 (2007), 413–423 | DOI | DOI | MR | Zbl
[19] K. Zheltukhin, N. Zheltukhina, E. Bilen, “On a class of Darboux-integrable semidiscrete equations”, Adv. Differ. Equ., 2017 (2017), 182, 14 pp. | DOI | MR
[20] K. Zheltukhin, N. Zheltukhina, “Semi-discrete hyperbolic equations admitting five dimensional characteristic $x$-ring”, J. Nonlinear Math. Phys., 23:3 (2016), 351–367 | DOI | MR
[21] G. Gubbiotti, C. Scimiterna, R. I. Yamilov, “Darboux integrability of trapezoidal $H^4$ and $H^6$ families of lattice equations II: General solutions”, SIGMA, 14 (2018), 008, 51 pp., arXiv: 1704.05805 | DOI | MR
[22] I. T. Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for $(2+1)$-dimensional lattices”, Phys. Scr., 87:6 (2013), 065005, 5 pp., arXiv: 1208.5302 | DOI | Zbl
[23] I. T. Habibullin, M. N. Poptsova, “Classification of a subclass of two-dimensional lattices via characteristic Lie rings”, SIGMA, 13 (2017), 073, 26 pp. | DOI | MR
[24] M. N. Poptsova, I. T. Khabibullin, “Algebraicheskie svoistva kvazilineinykh dvumerizovannykh tsepochek, svyazannye s integriruemostyu”, Ufimsk. matem. zhurn., 10:3 (2018), 89–109 | DOI
[25] M. N. Poptsova, “Simmetrii odnoi periodicheskoi tsepochki”, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 162 (2019), 80–84
[26] M. N. Kuznetsova, “Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras”, Ufimsk. matem. zhurn., 11:3 (2019), 110–131 | DOI
[27] A. B. Shabat, R. I. Yamilov, “To a transformation theory of two-dimensional integrable systems”, Phys. Lett. A, 227:1–2 (1997), 15–23 | DOI | MR
[28] G. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR
[29] D. Millionshchikov, “Lie algebras of slow growth and Klein–Gordon PDE”, Algebr. Represent. Theory, 21:5 (2018), 1037–1069 | DOI | MR
[30] A. V. Zhiber, O. S. Kostrigina, “Tochno integriruemye modeli volnovykh protsessov”, Vestn. UGATU, 9:7(25) (2007), 83–89
[31] A. B. Shabat, “Higher symmetries of two-dimensional lattices”, Phys. Lett. A, 200:2 (1995), 121–133 | DOI | MR