Keywords: Ginzburg–Landau equation, Seiberg–Witten equation, Abelian Higgs model, pseudoholomorphic curve.
@article{TMF_2020_203_1_a10,
author = {A. G. Sergeev},
title = {Adiabatic limit in {Ginzburg{\textendash}Landau} and {Seiberg{\textendash}Witten} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {151--160},
year = {2020},
volume = {203},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a10/}
}
A. G. Sergeev. Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 151-160. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a10/
[1] A. Jaffe, C. H. Taubes, Vortices and Monopoles, Progress in Physics, 2, Birkhäuser, Boston, 1980 | MR
[2] A. G. Sergeev, “Adiabaticheskii predel v uravneniyakh Ginzburga–Landau i Zaiberga–Vittena”, Tr. MIAN, 289 (2015), 242–303 | DOI | DOI
[3] N. S. Manton, “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110:1 (1982), 54–56 | DOI | MR
[4] R. V. Palvelev, “Obosnovanie adiabaticheskogo printsipa v abelevoi modeli Khiggsa”, Tr. MMO, 72:2 (2011), 281–314 | DOI | Zbl
[5] R. V. Palvelev, A. G. Sergeev, “Obosnovanie adiabaticheskogo printsipa dlya giperbolicheskikh uravnenii Ginzburga–Landau”, Tr. MIAN, 277 (2012), 199–214 | DOI | MR
[6] D. Salamon, Spin geometry and Seiberg–Witten invariants, University of Warwick, Warwick, 1996
[7] H. B. Lawson, M.-L. Michelsohn, Spin Geometry, Princeton Mathematical Series, 38, Princeton Univ. Press, Princeton, 1989 | MR
[8] C. H. Taubes, “$\mathrm{SW}\Rightarrow\mathrm{Gr}$: from the Seiberg–Witten equations to pseudoholomorphic curves”, J. Amer. Math. Soc., 9:3 (1996), 845–918 | DOI | MR