Diffusion chaos and its invariant numerical characteristics
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 10-25
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For distributed evolutionary dynamical systems of the "reaction–diffusion" and "reaction–diffusion–advec-tion" types, we analyze the behavior of invariant numerical characteristics of the attractor as the diffusion coefficients decrease. We consider the phenomenon of multimode diffusion chaos, one of whose signatures is an increase in the Lyapunov dimensions of the attractor. For several examples, we perform broad numerical experiments illustrating this phenomenon.
Mots-clés : reaction–diffusion system, diffusion chaos
Keywords: attractor, Lyapunov dimension.
@article{TMF_2020_203_1_a1,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Diffusion chaos and its invariant numerical characteristics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {10--25},
     year = {2020},
     volume = {203},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a1/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Diffusion chaos and its invariant numerical characteristics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 10
EP  - 25
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a1/
LA  - ru
ID  - TMF_2020_203_1_a1
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Diffusion chaos and its invariant numerical characteristics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 10-25
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a1/
%G ru
%F TMF_2020_203_1_a1
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Diffusion chaos and its invariant numerical characteristics. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 10-25. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a1/

[1] G. Nikolis, I. Prigozhin, Samoorganizatsiya v neravnovesnykh sistemakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii, Mir, M., 1979 | MR

[2] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Struktury i khaos v nelineinykh sredakh, Fizmatlit, M., 2007

[3] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2010 | MR

[4] M. A. Davydova, S. A. Zakharova, N. T. Levashova, “Ob odnoi modelnoi zadache dlya uravneniya reaktsiya–diffuziya–advektsiya”, Zh. vychisl. matem. i matem. fiz., 57:9 (2017), 1548–1559 | DOI | DOI

[5] N. T. Levashova, N. N. Nefedov, A. V. Yagremtsev, “Suschestvovanie resheniya v vide dvizhuschegosya fronta u zadachi tipa reaktsiya–diffuziya–advektsiya v sluchae sbalansirovannoi advektsii”, Izv. RAN. Ser. matem., 82:5 (2018), 131–152 | DOI | DOI

[6] B. Khessard, N. Kazarinov, I. Ven, Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR | Zbl

[7] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[8] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmos. Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[9] D. Ruelle, F. Takens, “On the nature of tubulence”, Commun. Math. Phys., 20:3 (1971), 167–192 | DOI | MR

[10] Y. Kuramoto, “Diffusion-induced chaos in reaction systems”, Prog. Theor. Phys. Suppl., 64 (1978), 346–367 | DOI

[11] S. D. Glyzin, “Dinamicheskie svoistva prosteishikh konechnoraznostnykh approksimatsii kraevoi zadachi ‘reaktsiya–diffuziya’ ”, Differents. uravneniya, 33:6 (1997), 805–811 | MR

[12] A. Yu. Kolesov, “Opisanie fazovoi neustoichivosti sistemy garmonicheskikh ostsillyatorov, slabo svyazannykh cherez diffuziyu”, Dokl. AN SSSR, 300:4 (1988), 831–835 | MR

[13] S. D. Glyzin, “Chislennoe obosnovanie gipotezy Landau–Kolesova o prirode turbulentnosti”, Matematicheskie modeli v biologii i meditsine, Vyp. 3, In-t matematiki i kibernetiki AN Lit. SSR, Vilnyus, 1989, 31–36

[14] S. D. Glyzin, “Raznostnye approksimatsii uravneniya reaktsiya–diffuziya na otrezke”, Model. i analiz inform. sistem, 16:3 (2009), 96–115

[15] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Konechnomernye modeli diffuzionnogo khaosa”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 860–875 | DOI

[16] S. D. Glyzin, “Dimensional characteristics of diffusion chaos”, Autom. Contr. Comput. Sci., 47:7 (2013), 452–469 | DOI

[17] A. V. Gaponov-Grekhov, M. I. Rabinovich, I. M. Starobinets, “Rozhdenie mnogomernogo khaosa v aktivnykh reshetkakh”, Dokl. AN SSSR, 279:3 (1984), 596–601 | MR

[18] A. V. Gaponov-Grekhov, M. I. Rabinovich, “Avtostruktury. Khaoticheskaya dinamika ansamblei”, Nelineinye volny. Struktury i bifurkatsii, Nauka, M., 1987, 7–44

[19] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Avtovolnovye protsessy v kontinualnykh tsepochkakh odnonapravlenno svyazannykh generatorov”, Tr. MIAN, 285 (2014), 89–106 | DOI | DOI

[20] A. V. Babin, M. I. Vishik, “Attraktory evolyutsionnykh uravnenii s chastnymi proizvodnymi i otsenki ikh razmernosti”, UMN, 38:4(232) (1983), 133–187 | DOI | MR | Zbl

[21] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[22] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer, New York, 1988 | DOI | MR

[23] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, AMS, Providence, RI, 2002 | MR | Zbl

[24] Yu. S. Kolesov, Problema adekvatnosti ekologicheskikh uravnenii, Dep. VINITI 15 marta 1985, No 1901-85, YarGU, Yaroslavl, 1985

[25] A. Yu. Kolesov, N. Kh. Rozov, “K voprosu ob opredelenii khaosa”, UMN, 64:4(388) (2009), 125–172 | DOI | DOI | MR | Zbl

[26] P. Frederickson, J. L. Kaplan, E. D. Yorke, J. Yorke, “The Lyapunov dimension of strange attractors”, J. Differ. Equ., 49:2 (1983), 185–207 | DOI | MR

[27] V. I. Arnold, B. A. Khesin, Topologicheskie metody v gidrodinamike, MTsNMO, M., 2007 | MR | Zbl

[28] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “K voprosu o realizuemosti stsenariya razvitiya turbulentnosti po Landau”, TMF, 158:2 (2009), 292–311 | DOI | DOI | MR | Zbl

[29] A. B. Vasileva, S. A. Kaschenko, Yu. S. Kolesov, N. Kh. Rozov, “Bifurkatsiya avtokolebanii nelineinykh parabolicheskikh uravnenii s maloi diffuziei”, Matem. sb., 130(172):4(8) (1986), 488–499 | DOI | MR | Zbl

[30] J. R. Dormand, P. J. Prince, “A family of embedded Runge–Kutta formulae”, J. Comput. Appl. Math., 6:1 (1980), 19–26 | DOI | MR

[31] G. Benettin, L. Galgani, J. M. Strelcyn, “Kolmogorov entropy and numerical experiments”, Phys. Rev. A, 14:6 (1976), 2338–2345 | DOI

[32] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, “Determining Lyapunov exponents from a time series”, Phys. D, 16:3 (1985), 285–317 | DOI | MR

[33] D. S. Glyzin, S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Metod dinamicheskoi perenormirovki dlya nakhozhdeniya maksimalnogo lyapunovskogo pokazatelya khaoticheskogo attraktora”, Differents. uravneniya, 41:2 (2005), 268–273 | DOI | MR