Keywords: attractor, Lyapunov dimension.
@article{TMF_2020_203_1_a1,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {Diffusion chaos and its invariant numerical characteristics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {10--25},
year = {2020},
volume = {203},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a1/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Diffusion chaos and its invariant numerical characteristics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 10 EP - 25 VL - 203 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a1/ LA - ru ID - TMF_2020_203_1_a1 ER -
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Diffusion chaos and its invariant numerical characteristics. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 10-25. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a1/
[1] G. Nikolis, I. Prigozhin, Samoorganizatsiya v neravnovesnykh sistemakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii, Mir, M., 1979 | MR
[2] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Struktury i khaos v nelineinykh sredakh, Fizmatlit, M., 2007
[3] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2010 | MR
[4] M. A. Davydova, S. A. Zakharova, N. T. Levashova, “Ob odnoi modelnoi zadache dlya uravneniya reaktsiya–diffuziya–advektsiya”, Zh. vychisl. matem. i matem. fiz., 57:9 (2017), 1548–1559 | DOI | DOI
[5] N. T. Levashova, N. N. Nefedov, A. V. Yagremtsev, “Suschestvovanie resheniya v vide dvizhuschegosya fronta u zadachi tipa reaktsiya–diffuziya–advektsiya v sluchae sbalansirovannoi advektsii”, Izv. RAN. Ser. matem., 82:5 (2018), 131–152 | DOI | DOI
[6] B. Khessard, N. Kazarinov, I. Ven, Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR | Zbl
[7] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[8] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmos. Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[9] D. Ruelle, F. Takens, “On the nature of tubulence”, Commun. Math. Phys., 20:3 (1971), 167–192 | DOI | MR
[10] Y. Kuramoto, “Diffusion-induced chaos in reaction systems”, Prog. Theor. Phys. Suppl., 64 (1978), 346–367 | DOI
[11] S. D. Glyzin, “Dinamicheskie svoistva prosteishikh konechnoraznostnykh approksimatsii kraevoi zadachi ‘reaktsiya–diffuziya’ ”, Differents. uravneniya, 33:6 (1997), 805–811 | MR
[12] A. Yu. Kolesov, “Opisanie fazovoi neustoichivosti sistemy garmonicheskikh ostsillyatorov, slabo svyazannykh cherez diffuziyu”, Dokl. AN SSSR, 300:4 (1988), 831–835 | MR
[13] S. D. Glyzin, “Chislennoe obosnovanie gipotezy Landau–Kolesova o prirode turbulentnosti”, Matematicheskie modeli v biologii i meditsine, Vyp. 3, In-t matematiki i kibernetiki AN Lit. SSR, Vilnyus, 1989, 31–36
[14] S. D. Glyzin, “Raznostnye approksimatsii uravneniya reaktsiya–diffuziya na otrezke”, Model. i analiz inform. sistem, 16:3 (2009), 96–115
[15] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Konechnomernye modeli diffuzionnogo khaosa”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 860–875 | DOI
[16] S. D. Glyzin, “Dimensional characteristics of diffusion chaos”, Autom. Contr. Comput. Sci., 47:7 (2013), 452–469 | DOI
[17] A. V. Gaponov-Grekhov, M. I. Rabinovich, I. M. Starobinets, “Rozhdenie mnogomernogo khaosa v aktivnykh reshetkakh”, Dokl. AN SSSR, 279:3 (1984), 596–601 | MR
[18] A. V. Gaponov-Grekhov, M. I. Rabinovich, “Avtostruktury. Khaoticheskaya dinamika ansamblei”, Nelineinye volny. Struktury i bifurkatsii, Nauka, M., 1987, 7–44
[19] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Avtovolnovye protsessy v kontinualnykh tsepochkakh odnonapravlenno svyazannykh generatorov”, Tr. MIAN, 285 (2014), 89–106 | DOI | DOI
[20] A. V. Babin, M. I. Vishik, “Attraktory evolyutsionnykh uravnenii s chastnymi proizvodnymi i otsenki ikh razmernosti”, UMN, 38:4(232) (1983), 133–187 | DOI | MR | Zbl
[21] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl
[22] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer, New York, 1988 | DOI | MR
[23] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, AMS, Providence, RI, 2002 | MR | Zbl
[24] Yu. S. Kolesov, Problema adekvatnosti ekologicheskikh uravnenii, Dep. VINITI 15 marta 1985, No 1901-85, YarGU, Yaroslavl, 1985
[25] A. Yu. Kolesov, N. Kh. Rozov, “K voprosu ob opredelenii khaosa”, UMN, 64:4(388) (2009), 125–172 | DOI | DOI | MR | Zbl
[26] P. Frederickson, J. L. Kaplan, E. D. Yorke, J. Yorke, “The Lyapunov dimension of strange attractors”, J. Differ. Equ., 49:2 (1983), 185–207 | DOI | MR
[27] V. I. Arnold, B. A. Khesin, Topologicheskie metody v gidrodinamike, MTsNMO, M., 2007 | MR | Zbl
[28] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “K voprosu o realizuemosti stsenariya razvitiya turbulentnosti po Landau”, TMF, 158:2 (2009), 292–311 | DOI | DOI | MR | Zbl
[29] A. B. Vasileva, S. A. Kaschenko, Yu. S. Kolesov, N. Kh. Rozov, “Bifurkatsiya avtokolebanii nelineinykh parabolicheskikh uravnenii s maloi diffuziei”, Matem. sb., 130(172):4(8) (1986), 488–499 | DOI | MR | Zbl
[30] J. R. Dormand, P. J. Prince, “A family of embedded Runge–Kutta formulae”, J. Comput. Appl. Math., 6:1 (1980), 19–26 | DOI | MR
[31] G. Benettin, L. Galgani, J. M. Strelcyn, “Kolmogorov entropy and numerical experiments”, Phys. Rev. A, 14:6 (1976), 2338–2345 | DOI
[32] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, “Determining Lyapunov exponents from a time series”, Phys. D, 16:3 (1985), 285–317 | DOI | MR
[33] D. S. Glyzin, S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Metod dinamicheskoi perenormirovki dlya nakhozhdeniya maksimalnogo lyapunovskogo pokazatelya khaoticheskogo attraktora”, Differents. uravneniya, 41:2 (2005), 268–273 | DOI | MR