Stability of Kolmogorov spectra for surface gravity waves
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Kolmogorov spectrum of waves on water is a result of cascading energy via four-wave interactions. For this spectrum in the isotropic case, we introduce basic small perturbations and calculate the decrement of their damping depending on the frequency. We confirm the stability of the Kolmogorov spectrum. The calculation results are applicable for analyzing the stability of numerical methods for solving the kinetic equation. We show that using the discrete-interaction approximation strongly reduces the damping in certain cases.
Keywords: wind wave, Kolmogorov spectrum, kinetic equation, stability.
@article{TMF_2020_203_1_a0,
     author = {V. V. Geogdzhaev},
     title = {Stability of {Kolmogorov} spectra for surface gravity waves},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--9},
     year = {2020},
     volume = {203},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a0/}
}
TY  - JOUR
AU  - V. V. Geogdzhaev
TI  - Stability of Kolmogorov spectra for surface gravity waves
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 3
EP  - 9
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a0/
LA  - ru
ID  - TMF_2020_203_1_a0
ER  - 
%0 Journal Article
%A V. V. Geogdzhaev
%T Stability of Kolmogorov spectra for surface gravity waves
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 3-9
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a0/
%G ru
%F TMF_2020_203_1_a0
V. V. Geogdzhaev. Stability of Kolmogorov spectra for surface gravity waves. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/TMF_2020_203_1_a0/

[1] K. Hasselmann, “On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory”, J. Fluid Mech., 12 (1962), 481–500 | DOI | MR

[2] V. E. Zakharov, N. N. Filonenko, “Spektr energii dlya stokhasticheskikh kolebanii poverkhnosti zhidkosti”, Dokl. AN SSSR, 170:6 (1966), 1292–1295

[3] V. E. Zakharov, “Energy balance in a wind-driven sea”, Phys. Scr., 2010:T142 (2010), 014052, 14 pp. | DOI

[4] V. E. Zakharov, S. I. Badulin, “O balanse energii vetrovykh voln”, Dokl. RAN, 440:5 (2011), 691–695 | DOI

[5] A. M. Balk, “On the Kolmogorov–Zakharov spectra of weak turbulence”, Phys. D, 139:1–2 (2000), 137–157 | DOI | MR

[6] S. Hasselmann, K. Hasselmann, J. H. Allender, T. P. Barnett, “Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models”, J. Phys. Oceanogr., 15:11 (1985), 1378–1391 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI