Relaxation cycles in a model of two weakly coupled oscillators with sign-changing delayed feedback
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 437-446 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the nonlocal dynamics of a model describing two weakly coupled oscillators with nonlinear compactly supported delayed feedback. Such models are found in applied problems of radiophysics, optics, and neurodynamics. The key assumption is that the nonlinearity is multiplied by a sufficiently large coefficient. This assumption allows using a special asymptotic method of a large parameter. Using this method, we reduce studying the existence, asymptotic behavior, and stability of relaxation cycles of the original infinite-dimensional system to studying the dynamics of the constructed finite-dimensional map. We investigate the dynamics of this map, construct the asymptotic behavior of the relaxation cycles of the original system, and conclude that the system is multistable.
Mots-clés : relaxation oscillation
Keywords: stability, delay, large parameter.
@article{TMF_2020_202_3_a9,
     author = {A. A. Kashchenko},
     title = {Relaxation cycles in a~model of two weakly coupled oscillators with sign-changing delayed feedback},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {437--446},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a9/}
}
TY  - JOUR
AU  - A. A. Kashchenko
TI  - Relaxation cycles in a model of two weakly coupled oscillators with sign-changing delayed feedback
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 437
EP  - 446
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a9/
LA  - ru
ID  - TMF_2020_202_3_a9
ER  - 
%0 Journal Article
%A A. A. Kashchenko
%T Relaxation cycles in a model of two weakly coupled oscillators with sign-changing delayed feedback
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 437-446
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a9/
%G ru
%F TMF_2020_202_3_a9
A. A. Kashchenko. Relaxation cycles in a model of two weakly coupled oscillators with sign-changing delayed feedback. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 437-446. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a9/

[1] A. S. Dmitriev, V. Ya. Kislov, Stokhasticheskie kolebaniya v radiofizike i elektronike, Nauka, M., 1989 | MR

[2] T. Kilias, K. Kelber, A. Mogel, W. Schwarz, “Electronic chaos generators – design and applications”, Intern. J. Electr., 79:6 (1995), 737–753 | DOI

[3] U. an der Heiden, M. C. Mackey, “The dynamics of production and destruction: Analytic insight into complex behavior”, J. Math. Biol., 16:1 (1982), 75–101 | DOI | MR

[4] M. Lakshmanan, D. V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems, Springer, Heidelberg, 2011 | DOI | MR

[5] J. Losson, M. C. Mackey, A. Longtin, “Solution multistability in first-order nonlinear differential delay equations”, Chaos, 3:2 (1993), 167–176 | DOI | MR

[6] A. S. Dmitriev, S. O. Starkov, “Issledovanie khaoticheskoi dinamiki koltsevogo avtogeneratora s asimmetrichnoi kharakteristikoi nelineinogo elementa”, Radiotekhnika i elektronika, 31:12 (1986), 2396–2405

[7] A. S. Dmitriev, V. Ya. Kislov, S. O. Starkov, “Eksperimentalnoe issledovanie obrazovaniya i vzaimodeistviya strannykh attraktorov v koltsevom avtogeneratore”, ZhTF, 55:12 (1985), 2417–2419

[8] J. Mallet-Paret, R. D. Nussbaum, “Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation”, Ann. Mat. Pura Appl., 145:1 (1986), 33–128 | DOI | MR

[9] A. F. Ivanov, A. N. Sharkovsky, “Oscillations in singularly perturbed delay equations”, Dynamics Reported: Expositions in Dynamical Systems, Dynamics Reported. New Series, 1, eds. C. K. R. T. Jones, U. Kirchgraber, H.-O. Walther, Springer, Berlin, Heidelberg, 1992, 164–224 | DOI | MR

[10] S. A. Kaschenko, “Asimptotika relaksatsionnykh kolebanii v sistemakh differentsialno-raznostnykh uravnenii s finitnoi nelineinostyu. I”, Differents. uravneniya, 31:8 (1995), 1330-1339 | MR

[11] M. I. Rabinovich, P. Varona, A. I. Selverston, H. D. I. Abarbanel, “Dynamical principles in neuroscience”, Rev. Modern Phys., 78:4 (2006), 1213–1265 | DOI

[12] A. A. Kashchenko, “Multistability in a system of two coupled oscillators with delayed feedback”, J. Differ. Equ., 266:1 (2019), 562–579 | DOI | MR

[13] A. A. Kaschenko, “Semeistvo negrubykh tsiklov v sisteme dvukh svyazannykh generatorov s zapazdyvaniem”, Model. i analiz inform. sistem, 24:5 (2017), 649–654 | DOI | MR

[14] A. A. Kaschenko, S. A. Kaschenko, “Asimptotika reshenii sistemy dvukh slabo svyazannykh generatorov relaksatsionnykh kolebanii s zapazdyvayuschei obratnoi svyazyu”, Izv. vuzov. Radiofizika, 61:8–9 (2018), 711–717 | DOI

[15] A. A. Kashchenko, “Non-rough relaxation solutions of a system with delay and sign-changing nonlinearity”, Nonlinear Phenomena in Complex Systems, 22:2 (2019), 190–195

[16] S. A. Kaschenko, “Issledovanie metodami bolshogo parametra sistemy nelineinykh differentsialno-raznostnykh uravnenii, modeliruyuschei zadachu khischnik–zhertva”, Dokl. AN SSSR, 266:4 (1982), 792–795 | MR | Zbl

[17] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, Knizhnyi dom “Librokom”, M., 2009