Keywords: stability, delay, large parameter.
@article{TMF_2020_202_3_a9,
author = {A. A. Kashchenko},
title = {Relaxation cycles in a~model of two weakly coupled oscillators with sign-changing delayed feedback},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {437--446},
year = {2020},
volume = {202},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a9/}
}
TY - JOUR AU - A. A. Kashchenko TI - Relaxation cycles in a model of two weakly coupled oscillators with sign-changing delayed feedback JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 437 EP - 446 VL - 202 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a9/ LA - ru ID - TMF_2020_202_3_a9 ER -
A. A. Kashchenko. Relaxation cycles in a model of two weakly coupled oscillators with sign-changing delayed feedback. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 437-446. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a9/
[1] A. S. Dmitriev, V. Ya. Kislov, Stokhasticheskie kolebaniya v radiofizike i elektronike, Nauka, M., 1989 | MR
[2] T. Kilias, K. Kelber, A. Mogel, W. Schwarz, “Electronic chaos generators – design and applications”, Intern. J. Electr., 79:6 (1995), 737–753 | DOI
[3] U. an der Heiden, M. C. Mackey, “The dynamics of production and destruction: Analytic insight into complex behavior”, J. Math. Biol., 16:1 (1982), 75–101 | DOI | MR
[4] M. Lakshmanan, D. V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems, Springer, Heidelberg, 2011 | DOI | MR
[5] J. Losson, M. C. Mackey, A. Longtin, “Solution multistability in first-order nonlinear differential delay equations”, Chaos, 3:2 (1993), 167–176 | DOI | MR
[6] A. S. Dmitriev, S. O. Starkov, “Issledovanie khaoticheskoi dinamiki koltsevogo avtogeneratora s asimmetrichnoi kharakteristikoi nelineinogo elementa”, Radiotekhnika i elektronika, 31:12 (1986), 2396–2405
[7] A. S. Dmitriev, V. Ya. Kislov, S. O. Starkov, “Eksperimentalnoe issledovanie obrazovaniya i vzaimodeistviya strannykh attraktorov v koltsevom avtogeneratore”, ZhTF, 55:12 (1985), 2417–2419
[8] J. Mallet-Paret, R. D. Nussbaum, “Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation”, Ann. Mat. Pura Appl., 145:1 (1986), 33–128 | DOI | MR
[9] A. F. Ivanov, A. N. Sharkovsky, “Oscillations in singularly perturbed delay equations”, Dynamics Reported: Expositions in Dynamical Systems, Dynamics Reported. New Series, 1, eds. C. K. R. T. Jones, U. Kirchgraber, H.-O. Walther, Springer, Berlin, Heidelberg, 1992, 164–224 | DOI | MR
[10] S. A. Kaschenko, “Asimptotika relaksatsionnykh kolebanii v sistemakh differentsialno-raznostnykh uravnenii s finitnoi nelineinostyu. I”, Differents. uravneniya, 31:8 (1995), 1330-1339 | MR
[11] M. I. Rabinovich, P. Varona, A. I. Selverston, H. D. I. Abarbanel, “Dynamical principles in neuroscience”, Rev. Modern Phys., 78:4 (2006), 1213–1265 | DOI
[12] A. A. Kashchenko, “Multistability in a system of two coupled oscillators with delayed feedback”, J. Differ. Equ., 266:1 (2019), 562–579 | DOI | MR
[13] A. A. Kaschenko, “Semeistvo negrubykh tsiklov v sisteme dvukh svyazannykh generatorov s zapazdyvaniem”, Model. i analiz inform. sistem, 24:5 (2017), 649–654 | DOI | MR
[14] A. A. Kaschenko, S. A. Kaschenko, “Asimptotika reshenii sistemy dvukh slabo svyazannykh generatorov relaksatsionnykh kolebanii s zapazdyvayuschei obratnoi svyazyu”, Izv. vuzov. Radiofizika, 61:8–9 (2018), 711–717 | DOI
[15] A. A. Kashchenko, “Non-rough relaxation solutions of a system with delay and sign-changing nonlinearity”, Nonlinear Phenomena in Complex Systems, 22:2 (2019), 190–195
[16] S. A. Kaschenko, “Issledovanie metodami bolshogo parametra sistemy nelineinykh differentsialno-raznostnykh uravnenii, modeliruyuschei zadachu khischnik–zhertva”, Dokl. AN SSSR, 266:4 (1982), 792–795 | MR | Zbl
[17] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, Knizhnyi dom “Librokom”, M., 2009