Construction of exact solutions of the problem of the motion of a fluid with a free boundary using infinite systems of differential
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 425-436
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the well-known hydrodynamics problem for the planar potential motion of an ideal incompressible fluid with a free boundary without capillarity and propose a method for finding exact solutions based on reducing the boundary-value problems to systems of ordinary differential equations. We obtain two examples of flows: a stationary motion of a heavy fluid over a smooth bottom and a nonstationary motion of a fluid that originally filled a wedge.
Keywords: ideal incompressible fluid, doubly periodic function.
Mots-clés : exact solution, conformal map
@article{TMF_2020_202_3_a8,
     author = {E. A. Karabut and E. N. Zhuravleva},
     title = {Construction of exact solutions of the~problem of the~motion of a~fluid with a~free boundary using infinite systems of differential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {425--436},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a8/}
}
TY  - JOUR
AU  - E. A. Karabut
AU  - E. N. Zhuravleva
TI  - Construction of exact solutions of the problem of the motion of a fluid with a free boundary using infinite systems of differential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 425
EP  - 436
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a8/
LA  - ru
ID  - TMF_2020_202_3_a8
ER  - 
%0 Journal Article
%A E. A. Karabut
%A E. N. Zhuravleva
%T Construction of exact solutions of the problem of the motion of a fluid with a free boundary using infinite systems of differential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 425-436
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a8/
%G ru
%F TMF_2020_202_3_a8
E. A. Karabut; E. N. Zhuravleva. Construction of exact solutions of the problem of the motion of a fluid with a free boundary using infinite systems of differential. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 425-436. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a8/

[1] M. I. Gurevich, Teoriya strui idealnoi zhidkosti, Nauka, M., 1979

[2] L. M. Miln-Tomson, Teoreticheskaya gidrodinamika, Mir, M., 1964 | MR | Zbl

[3] H. Villat, “Sur I'écoulement des fluides pesants”, Ann. Sci. École Norm. Sup. (3), 32 (1915), 177–214 | MR

[4] A. R. Richardson, “Stationary waves in water”, Phil. Mag. (6), 40 (1920), 97–110 | Zbl

[5] L. V. Ovsyannikov, “Obschie uravneniya i primery”, Zadacha o neustanovivshemsya dvizhenii zhidkosti so svobodnoi granitsei, Nauka, Novosibirsk, 1967, 5–75

[6] E. A. Karabut, E. N. Zhuravleva, “Unsteady flows with a zero acceleration on the free boundary”, J. Fluid Mech., 754 (2014), 308–331 | DOI | MR

[7] N. M. Zubarev, E. A. Karabut, “Tochnye lokalnye resheniya dlya formirovaniya osobennostei na svobodnoi poverkhnosti idealnoi zhidkosti”, Pisma v ZhETF, 107:7 (2018), 434–439 | DOI

[8] E. A. Karabut, “An approximation for the highest gravity waves on water of finite depth”, J. Fluid Mech., 372 (1998), 45–70 | DOI | MR

[9] W. A. B. Evans, M. J. Ford, “An exact integral equation for solitary waves (with new numerical results for some ‘internal’ properties)”, J. Proc. Roy. Soc. London Ser. A., 452 (1996), 373 | DOI | MR

[10] E. A. Karabut, “Malye vozmuscheniya v zadache o soudarenii strui. Osnovnye uravneniya”, PMTF, 50:6 (2009), 36–54 | DOI