Motion of dispersive shock edges in nonlinear pulse evolution
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 415-424

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate a method for calculating the velocities of the edges of dispersive shock waves that are generated after wave breaking of pulses during their propagation in a nonlinear medium. The method is based on the properties of the Whitham modulation system at its degenerate limits obtained for either a vanishing amplitude of oscillations at one edge or a vanishing wave number at the other edge.
Keywords: nonlinear wave, dispersive shock wave, Whitham theory.
Mots-clés : soliton
@article{TMF_2020_202_3_a7,
     author = {A. M. Kamchatnov},
     title = {Motion of dispersive shock edges in nonlinear pulse evolution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {415--424},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a7/}
}
TY  - JOUR
AU  - A. M. Kamchatnov
TI  - Motion of dispersive shock edges in nonlinear pulse evolution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 415
EP  - 424
VL  - 202
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a7/
LA  - ru
ID  - TMF_2020_202_3_a7
ER  - 
%0 Journal Article
%A A. M. Kamchatnov
%T Motion of dispersive shock edges in nonlinear pulse evolution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 415-424
%V 202
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a7/
%G ru
%F TMF_2020_202_3_a7
A. M. Kamchatnov. Motion of dispersive shock edges in nonlinear pulse evolution. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 415-424. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a7/