Motion of dispersive shock edges in nonlinear pulse evolution
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 415-424
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We formulate a method for calculating the velocities of the edges of dispersive shock waves that are generated after wave breaking of pulses during their propagation in a nonlinear medium. The method is based on the properties of the Whitham modulation system at its degenerate limits obtained for either a vanishing amplitude of oscillations at one edge or a vanishing wave number at the other edge.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlinear wave, dispersive shock wave, Whitham theory.
Mots-clés : soliton
                    
                  
                
                
                Mots-clés : soliton
@article{TMF_2020_202_3_a7,
     author = {A. M. Kamchatnov},
     title = {Motion of dispersive shock edges in nonlinear pulse evolution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {415--424},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a7/}
}
                      
                      
                    A. M. Kamchatnov. Motion of dispersive shock edges in nonlinear pulse evolution. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 415-424. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a7/
