Integrable model of the interaction of counter-propagating weakly nonlinear waves on the fluid boundary in a horizontal electric field
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 403-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the nonlinear dynamics of the free surface of a high-permittivity dielectric fluid in a strong horizontal electric field. In the framework of the weakly nonlinear approximation where we assume that the inclination angles of the boundary are small and take only the terms quadratically nonlinear in a small parameter into account in the equations of motion, we obtain a compact model equation that describes nonlinear wave processes in the system. We use this equation to investigate the interaction of counter-propagating solitary surface waves analytically and numerically. In particular, we demonstrate that the counter-propagating waves restore their shape after the interaction and thus acquire a certain phase shift. We also show that these properties of the model originate from its integrability.
Keywords: nonlinear wave, integrability, electric field, free fluid surface.
@article{TMF_2020_202_3_a6,
     author = {N. M. Zubarev and E. A. Kochurin},
     title = {Integrable model of the~interaction of counter-propagating weakly nonlinear waves on the~fluid boundary in a~horizontal electric field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--414},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a6/}
}
TY  - JOUR
AU  - N. M. Zubarev
AU  - E. A. Kochurin
TI  - Integrable model of the interaction of counter-propagating weakly nonlinear waves on the fluid boundary in a horizontal electric field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 403
EP  - 414
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a6/
LA  - ru
ID  - TMF_2020_202_3_a6
ER  - 
%0 Journal Article
%A N. M. Zubarev
%A E. A. Kochurin
%T Integrable model of the interaction of counter-propagating weakly nonlinear waves on the fluid boundary in a horizontal electric field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 403-414
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a6/
%G ru
%F TMF_2020_202_3_a6
N. M. Zubarev; E. A. Kochurin. Integrable model of the interaction of counter-propagating weakly nonlinear waves on the fluid boundary in a horizontal electric field. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 403-414. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a6/

[1] E. A. Kuznetsov, V. E. Zakharov, “Nonlinear coherent phenomena in continuous media”, Nonlinear Science at the Dawn of the 21st Century, Lecture Notes in Physics, 542, eds. P. L. Christiansen, M. P. Sørensen, A. C. Scott, Springer, Berlin, 2000, 3–45 | DOI | MR

[2] V. E. Zakharov, E. A. Kuznetsov, “Solitony i kollapsy: dva stsenariya evolyutsii nelineinykh volnovykh sistem”, UFN, 182:6 (2012), 569–592 | DOI

[3] V. E. Zakharov, “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnost glubokoi zhidkosti”, PMTF, 9:2 (1968), 86–94 | DOI

[4] A. C. Newell, Solitons in Mathematics and Physics, CBMS-NSF Regional Conference Series in Applied Mathematics, 48, SIAM, Philadelphia, PA, 1985 | DOI | MR

[5] J. R. Melcher, “Electrohydrodynamic and magnetohydrodynamic surface waves and instabilities”, Phys. Fluids, 4:11 (1961), 1348–1354 | DOI | MR

[6] N. M. Zubarev, “Formation of root singularities on the free surface of a conducting fluid in an electric field”, Phys. Lett. A, 243:3 (1998), 128–131 | DOI

[7] N. M. Zubarev, “Formirovanie osobennostei na poverkhnosti zhidkogo metalla v silnom elektricheskom pole”, ZhETF, 114:6(12) (1998), 2043–2054 | DOI

[8] N. M. Zubarev, “Nonlinear waves on the surface of a dielectric liquid in a strong tangential electric field”, Phys. Lett. A, 333:3–4 (2004), 284–288, arXiv: physics/0410097 | DOI

[9] N. M. Zubarev, O. V. Zubareva, “Propagation of large-amplitude waves on dielectric liquid sheets in a tangential electric field: Exact solutions in three-dimensional geometry”, Phys. Rev. E, 82:4 (2010), 046301, 9 pp. | DOI

[10] D. T. Papageorgiou, “Film flows in the presence of electric fields”, Ann. Rev. Fluid Mech., 51:1 (2019), 155–187 | DOI | MR

[11] D. Koulova, H. Romat, C. Louste, “Experimental study of wave propagation on liquid/air surfaces under perpendicular electric field”, IEEE Trans. Diel. Electr. Insul., 25:5 (2018), 1716–1722 | DOI

[12] Q. Yang, B. Q. Li, F. Xu, “Electrohydrodynamic Rayleigh–Taylor instability in leaky dielectric fluids”, Internat. J. Heat Mass Transfer, 109 (2017), 690–704 | DOI

[13] M. Yu. Brazhnikov, A. A. Levchenko, L. P. Mezhov-Deglin, I. A. Remizov, “Raspadnaya neustoichivost gravitatsionno-kapillyarnoi volny na poverkhnosti zhidkogo vodoroda”, FNT, 43:3, 396–400 | DOI

[14] K. Zakaria, “Nonlinear dynamics of magnetic fluids with a relative motion in the presence of an oblique magnetic field”, Phys. A, 327:3–4 (2003), 221–248 | DOI | MR

[15] M. F. El-Sayed, D. K. Callebaut, “EHD self-modulation of capillary-gravity waves on a liquid layer of uniform depth”, Phys. A, 269:2–4 (1999), 235–251 | DOI

[16] L. L. Barannyk, D. T. Papageorgiou, “Fully nonlinear gravity-capillary solitary waves in a two-fluid system of finite depth”, J. Eng. Math., 42:3–4 (2002), 321–339 | DOI | MR

[17] Z. Wang, “Modelling nonlinear electrohydrodynamic surface waves over three-dimensional conducting fluids”, Proc. Roy. Soc. London Ser. A, 473:2200 (2017), 20160817, 20 pp. | DOI | MR

[18] B. Tao, “Model equations for three-dimensional nonlinear water waves under tangential electric field”, Adv. Math. Phys., 2017 (2017), 9312681, 8 pp. | DOI | MR

[19] A. I. Zhakin, “Elektrogidrodinamika zaryazhennykh poverkhnostei”, UFN, 183:2 (2013), 153–177 | DOI

[20] B. Tao, D. L. Guo, “Fully nonlinear capillary–gravity wave patterns under the tangential electric field”, Comput. Math. Appl., 67:3 (2014), 627–635 | DOI | MR

[21] B. Tao, “Fully nonlinear capillary–gravity solitary waves under a tangential electric field, Part II: Dynamics”, Comput. Math. Appl., 76:4 (2018), 788–798 | DOI | MR

[22] T. Gao, P. A. Milewski, D. T. Papageorgiou, J.-M. Vanden-Broeck, “Dynamics of fully nonlinear capillary–gravity solitary waves under normal electric fields”, J. Eng. Math., 108:1 (2018), 107–122 | DOI | MR

[23] E. A. Kochurin, “Formirovanie oblastei s vysokimi gradientami energii i davleniya na svobodnoi poverkhnosti zhidkogo dielektrika v tangentsialnom elektricheskom pole”, PMTF, 59:1 (2018), 91–98, arXiv: 1711.03710 | DOI | DOI | MR

[24] N. M. Zubarev, O. V. Zubareva, “Bezdispersionnoe rasprostranenie voln konechnoi amplitudy po poverkhnosti dielektricheskoi zhidkosti v tangentsialnom elektricheskom pole”, Pisma v ZhTF, 32:20 (2006), 40–44 | DOI

[25] N. M. Zubarev, “Nelineinye volny na poverkhnosti dielektricheskoi zhidkosti v gorizontalnom elektricheskom pole v $3D$ geometrii; tochnye resheniya”, Pisma v ZhETF, 89:6 (2009), 317–321 | DOI

[26] E. A. Kochurin, “Formirovanie slabykh osobennostei na poverkhnosti dielektricheskoi zhidkosti v tangentsialnom elektricheskom pole”, Pisma v ZhTF, 45:3 (2019), 7–9 | DOI | DOI

[27] E. A. Kochurin, N. M. Zubarev, “Jet formation at the interaction of localized waves on the free surface of dielectric liquid in a tangential electric field”, J. Phys.: Conf. Ser., 946:1 (2018), 012021, 8 pp. | DOI

[28] E. A. Kuznetsov, M. D. Spector, V. E. Zakharov, “Formation of singularities on the free surface of an ideal fluid”, Phys. Rev. E, 49:2 (1994), 1283–1290 | DOI | MR

[29] N. M. Zubarev, E. A. Kuznetsov, “Formirovanie osobennostei na poverkhnosti razdela zhidkostei pri razvitii neustoichivosti Kelvina–Gelmgoltsa”, ZhETF, 146:1(7) (2014), 194–204 | DOI | DOI

[30] E. A. Karabut, E. N. Zhuravleva, “Unsteady flows with a zero acceleration on the free boundary”, J. Fluid Mech., 754 (2014), 308–331 | DOI | MR

[31] E. A. Karabut, E. N. Zhuravleva, “Nestatsionarnye techeniya s nulevym uskoreniem na svobodnoi granitse”, Dokl. RAN, 458:6 (2014), 656–659 | DOI | MR

[32] N. M. Zubarev, E. A. Karabut, “Tochnye lokalnye resheniya dlya formirovaniya osobennostei na svobodnoi poverkhnosti idealnoi zhidkosti”, Pisma v ZhETF, 107:7 (2018), 434–439 | DOI | DOI

[33] N. M. Zubarev, E. A. Kochurin, “Vzaimodeistvie silno nelineinykh voln na svobodnoi poverkhnosti neprovodyaschei zhidkosti v gorizontalnom elektricheskom pole”, Pisma v ZhETF, 99:11 (2014), 729–734 | DOI | DOI

[34] E. A. Kochurin, “Volnovaya turbulentnost poverkhnosti zhidkosti vo vneshnem tangentsialnom elektricheskom pole”, Pisma v ZhETF, 109:5 (2019), 306–311 | DOI | DOI

[35] E. A. Kochurin, N. M. Zubarev, “Gravity-capillary waves on the free surface of a liquid dielectric in a tangential electric field”, IEEE Trans. Diel. Electr. Insul., 25:5 (2018), 1723–1730 | DOI