Mots-clés : exact solution
@article{TMF_2020_202_3_a5,
author = {E. N. Zhuravleva and N. M. Zubarev and O. V. Zubareva and E. A. Karabut},
title = {A~new class of exact solutions in the~planar nonstationary problem of motion of a~fluid with a~free boundary},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {393--402},
year = {2020},
volume = {202},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a5/}
}
TY - JOUR AU - E. N. Zhuravleva AU - N. M. Zubarev AU - O. V. Zubareva AU - E. A. Karabut TI - A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 393 EP - 402 VL - 202 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a5/ LA - ru ID - TMF_2020_202_3_a5 ER -
%0 Journal Article %A E. N. Zhuravleva %A N. M. Zubarev %A O. V. Zubareva %A E. A. Karabut %T A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 393-402 %V 202 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a5/ %G ru %F TMF_2020_202_3_a5
E. N. Zhuravleva; N. M. Zubarev; O. V. Zubareva; E. A. Karabut. A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 393-402. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a5/
[1] E. A. Kuznetsov, M. D. Spector, V. E. Zakharov, “Surface singularities of ideal fluid”, Phys. Lett. A, 182:4–6 (1993), 387–393 | DOI | MR
[2] E. A. Kuznetsov, M. D. Spector, V. E. Zakharov, “Formation of singularities on the free surface of an ideal fluid”, Phys. Rev. E, 49:2 (1994), 1283–1290 | DOI | MR
[3] S. Tanveer, “Singularities in water waves and Rayleigh–Taylor instability”, Proc. Roy. Soc. London Ser. A., 435:1893 (1991), 137–158 | DOI | MR
[4] P. M. Lushnikov, “Structure and location of branch point singularities for Stokes waves on deep water”, J. Fluid Mech., 800 (2016), 557–594 | DOI | MR
[5] N. M. Zubarev, “Formation of root singularities on the free surface of a conducting fluid in an electric field”, Phys. Lett. A, 243:3 (1998), 128–131 | DOI
[6] N. M. Zubarev, “Formirovanie osobennostei na poverkhnosti zhidkogo metalla v silnom elektricheskom pole”, ZhETF, 114:6(12) (1998), 2043–2054 | DOI
[7] N. M. Zubarev, E. A. Kuznetsov, “Formirovanie osobennostei na poverkhnosti razdela zhidkostei pri razvitii neustoichivosti Kelvina–Gelmgoltsa”, ZhETF, 146:1(7) (2014), 194–204 | DOI | DOI
[8] E. A. Karabut, E. N. Zhuravleva, “Nestatsionarnye techeniya s nulevym uskoreniem na svobodnoi granitse”, Dokl. RAN, 458:6 (2014), 656–659 | DOI | DOI | MR
[9] E. A. Karabut, E. N. Zhuravleva, “Unsteady flows with a zero acceleration on the free boundary”, J. Fluid Mech., 754 (2014), 308–331 | DOI | MR
[10] E. A. Karabut, E. N. Zhuravleva, “Razmnozhenie reshenii v ploskoi zadache o dvizhenii zhidkosti so svobodnoi granitsei”, Dokl. RAN, 469:3 (2016), 295–298 | DOI | MR
[11] N. M. Zubarev, E. A. Karabut, “Tochnye lokalnye resheniya dlya formirovaniya osobennostei na svobodnoi poverkhnosti idealnoi zhidkosti”, Pisma v ZhETF, 107:7 (2018), 434–439 | DOI
[12] A. I. Dyachenko, V. E. Zakharov, “Is free-surface hydrodynamics an integrable system?”, Phys. Lett. A, 190:2 (1994), 144–148 | DOI | MR
[13] A. I. Dyachenko, P. M. Lushnikov, V. E. Zakharov, “Non-canonical Hamiltonian structure and Poisson bracket for two-dimensional hydrodynamics with free surface”, J. Fluid Mech., 869 (2019), 526–552 | DOI | MR
[14] A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov, V. E. Zakharov, “Dynamics of poles in two-dimensional hydrodynamics with free surface: new constants of motion”, J. Fluid Mech., 874 (2019), 891–925, arXiv: 1809.09584 | DOI | MR
[15] D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman, C. Tang, “Viscous flows in two dimensions”, Rev. Modern Phys., 58:4 (1986), 977–999 | DOI
[16] V. E. Zakharov, A. I. Dyachenko, “High-Jacobian approximation in the free surface dynamics of an ideal fluid”, Phys. D, 98:2–4 (1996), 652–664 | DOI | MR
[17] A. I. Dyachenko, V. E. Zakharov, E. A. Kuznetsov, “Nelineinaya dinamika svobodnoi poverkhnosti idealnoi zhidkosti”, Fizika plazmy, 22:10 (1996), 916–928
[18] M. Mineev-Weinstein, P. B. Wiegmann, A. Zabrodin, “Integrable structure of interface dynamics”, Phys. Rev. Lett., 84:22 (2000), 5106–5109, arXiv: nlin/0001007 | DOI
[19] N. M. Zubarev, “Razvitie neustoichivosti zaryazhennoi poverkhnosti zhidkogo geliya: tochnye resheniya”, Pisma v ZhETF, 71:9 (2000), 534–538 | DOI
[20] N. M. Zubarev, “Tochnye resheniya uravnenii dvizheniya zhidkogo geliya so svobodnoi zaryazhennoi poverkhnostyu”, ZhETF, 121:3 (2002), 624–636 | DOI
[21] P. M. Lushnikov, N. M. Zubarev, “Exact solutions for nonlinear development of a Kelvin–Helmholtz instability for the counterflow of superfluid and normal components of helium II”, Phys. Rev. Lett., 120:20 (2018), 204504, 6 pp., arXiv: 1710.10684 | DOI