@article{TMF_2020_202_3_a4,
author = {S. A. Dyachenko and P. Nabelek and D. V. Zakharov and V. E. Zakharov},
title = {Primitive solutions of {the~Korteweg{\textendash}de~Vries} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {382--392},
year = {2020},
volume = {202},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a4/}
}
TY - JOUR AU - S. A. Dyachenko AU - P. Nabelek AU - D. V. Zakharov AU - V. E. Zakharov TI - Primitive solutions of the Korteweg–de Vries equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 382 EP - 392 VL - 202 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a4/ LA - ru ID - TMF_2020_202_3_a4 ER -
S. A. Dyachenko; P. Nabelek; D. V. Zakharov; V. E. Zakharov. Primitive solutions of the Korteweg–de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 382-392. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a4/
[1] S. Dyachenko, D. Zakharov, V. Zakharov, “Primitive potentials and bounded solutions of the KdV equation”, Phys. D, 333 (2016), 148–156 | DOI | MR
[2] D. V. Zakharov, S. A. Dyachenko, V. E. Zakharov, “Bounded solutions of KdV and non-periodic one-gap potentials in quantum mechanics”, Lett. Math. Phys., 106:6 (2016), 731–740 | DOI | MR
[3] D. V. Zakharov, S. A. Dyachenko, V. E. Zakharov, “Non-periodic one-dimensional ideal conductors and integrable turbulence”, Phys. Lett. A, 380:46 (2016), 3881–3885 | DOI
[4] D. Zakharov, V. Zakharov, “Non-periodic one-gap potentials in quantum mechanics”, Geometric Methods in Physics XXXV (Workshop and Summer School, Białowiez̀a, Poland, June 26–July 2, 2016), Trends in Mathematics, eds. P. Kielanowski, A. Odzijewicz, E. Previato, Springer, Birkhäuser, 2018, 213–225 | MR
[5] P. Nabelek, D. Zakharov, V. Zakharov, “On symmetric primitive potentials”, J. Integr. Syst., 4:1 (2019), xyz006, 20 pp. | DOI | MR
[6] P. V. Nabelek, Algebro-geometric finite gap solutions to the Korteweg–de Vries equation as primitive solutions, arXiv: 1907.09667
[7] D. Zakharov, V. Zakharov, Generalized primitive potentials, arXiv: 1907.05038
[8] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[9] P. Deift, E. Trubowitz, “Inverse scattering on the line”, Commun. Pure Appl. Math., 32:2 (1979), 121–251 | DOI | MR
[10] K. Grunert, G. Teschl, “Long-time asymptotics for the Korteweg–de Vries equation via nonlinear steepest descent”, Math. Phys. Anal. Geom., 12:3 (2009), 287–324 | DOI | MR
[11] V. E. Zakharov, S. V. Manakov, “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. analiz i ego pril., 19:2 (1985), 11–25 | DOI | MR | Zbl
[12] M. Girotti, T. Grava, R. Jenkins, K. D. T.-R. McLaughlin, Rigorous asymptotics of a KdV soliton gas, arXiv: 1807.00608