Primitive solutions of the~Korteweg--de~Vries equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 382-392
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We survey recent results connected with constructing a new family of solutions of the Korteweg–de Vries equation, which we call primitive solutions. These solutions are constructed as limits of rapidly vanishing solutions of the Korteweg–de Vries equation as the number of solitons tends to infinity. A primitive solution is determined nonuniquely by a pair of positive functions on an interval on the imaginary axis and a function on the real axis determining the reflection coefficient. We show that elliptic one-gap solutions and, more generally, periodic finite-gap solutions are special cases of reflectionless primitive solutions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
integrable system, Korteweg–de Vries equation, primitive solution.
                    
                  
                
                
                @article{TMF_2020_202_3_a4,
     author = {S. A. Dyachenko and P. Nabelek and D. V. Zakharov and V. E. Zakharov},
     title = {Primitive solutions of {the~Korteweg--de~Vries} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {382--392},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a4/}
}
                      
                      
                    TY - JOUR AU - S. A. Dyachenko AU - P. Nabelek AU - D. V. Zakharov AU - V. E. Zakharov TI - Primitive solutions of the~Korteweg--de~Vries equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 382 EP - 392 VL - 202 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a4/ LA - ru ID - TMF_2020_202_3_a4 ER -
%0 Journal Article %A S. A. Dyachenko %A P. Nabelek %A D. V. Zakharov %A V. E. Zakharov %T Primitive solutions of the~Korteweg--de~Vries equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 382-392 %V 202 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a4/ %G ru %F TMF_2020_202_3_a4
S. A. Dyachenko; P. Nabelek; D. V. Zakharov; V. E. Zakharov. Primitive solutions of the~Korteweg--de~Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 382-392. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a4/
