Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 364-381 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study long nonlinear longitudinal bulk strain waves in a hyperelastic rod of circular cross section in the framework of general weakly nonlinear elasticity leading to a model with quadratic and cubic nonlinearities. We systematically derive extended equations of the Boussinesq and Korteweg–de Vries types and construct a family of approximate weakly nonlinear soliton solutions using near-identity transformations. We compare these solutions with the results of direct numerical simulations of the original nonlinear problem formulation, showing excellent agreement in the range of their asymptotic validity (waves of small amplitude) and extending their relevance beyond it (to waves of moderate amplitude) as a very good initial condition. In particular, we can observe a stably propagating “table-top” soliton.
Keywords: hyperelastic rod, Korteweg–de Vries-type equation, near-identity transformation
Mots-clés : soliton.
@article{TMF_2020_202_3_a3,
     author = {F. E. Garbuzov and Y. M. Beltukov and K. R. Khusnutdinova},
     title = {Longitudinal bulk strain solitons in a~hyperelastic rod with quadratic and cubic nonlinearities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {364--381},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a3/}
}
TY  - JOUR
AU  - F. E. Garbuzov
AU  - Y. M. Beltukov
AU  - K. R. Khusnutdinova
TI  - Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 364
EP  - 381
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a3/
LA  - ru
ID  - TMF_2020_202_3_a3
ER  - 
%0 Journal Article
%A F. E. Garbuzov
%A Y. M. Beltukov
%A K. R. Khusnutdinova
%T Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 364-381
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a3/
%G ru
%F TMF_2020_202_3_a3
F. E. Garbuzov; Y. M. Beltukov; K. R. Khusnutdinova. Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 364-381. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a3/

[1] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | Zbl

[2] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[4] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR

[5] G. A. Maugin, Nonlinear waves in elastic crystals, Oxford Univ. Press, Oxford, 1999 | MR

[6] H.-H. Dai, Z. Cai, “Phase transition in a slender cylinder composed of an incompressible elastic material. I. Asymptotic model equation”, Proc. Roy. Soc. London Ser. A, 462:2065 (2006), 75–95 | DOI | MR

[7] A. Mayer, “Nonlinear surface acoustic waves: Theory”, Ultrasonics, 48:6–7 (2008), 478–481 | DOI

[8] P. Hess, A. M. Lomonosov, “Solitary surface acoustic waves and bulk solitons in nanosecond and picosecond laser ultrasonics”, Ultrasonics, 50:2 (2010), 167–171 | DOI

[9] J. Engelbrecht, A. Salupere, K. Tamm, “Waves in microstructured solids and the Boussinesq paradigm”, Wave Motion, 48:8 (2011), 717–726 | DOI | MR

[10] A. Pau, F. Lanza di Scalea, “Nonlinear guided wave propagation in prestressed plates”, J. Acoust. Soc. Am., 137:3 (2015), 1529–1540 | DOI

[11] T. Peets, K. Tamm, J. Engelbrecht, “On the role of nonlinearities in the Boussinesq-type wave equations”, Wave Motion, 71 (2017), 113–119 | DOI | MR

[12] G. A. Nariboli, A. Sedov, “Burgers–Korteweg de Vries equation for viscoelastic rods and plates”, J. Math. Anal. Appl., 32:3 (1970), 661–677 | DOI | MR

[13] L. A. Ostrovskii, A. M. Sutin, “Nelineinye uprugie volny v sterzhnyakh”, PMM, 41:3 (1977), 531–537 | DOI

[14] A. M. Samsonov, “Structural optimization in nonlinear wave propagation problems”, Structural Optimization Under Dynamical Loading, ed. U. Lepik, Tartu Univ. Press, Tartu, 1982, 75–76

[15] A. M. Samsonov, “Evolyutsiya solitona v nelineino uprugom sterzhne peremennogo secheniya”, Dokl. AN SSSR, 277:2 (1984), 332–335 | MR | Zbl

[16] A. V. Porubov, A. M. Samsonov, “Utochnenie modeli rasprostraneniya prodolnykh voln deformatsii v nelineino-uprugom sterzhne”, Pisma v ZhTF, 19 (1993), 26–29

[17] A. V. Porubov, M. G. Velarde, “Dispersive-dissipative solitons in nonlinear solids”, Wave Motion, 31:3 (2000), 197–207 | DOI | MR

[18] A. M. Samsonov, Strain Solitons in Solids and How to Construct Them, Monographs and Surveys in Pure and Applied Mathematics, 117, Chapman and Hall CRC, Boca Raton, FL, 2001 | DOI

[19] A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids, Series on Stability, Vibration and Control of Systems. Ser. A, 9, World Sci., Singapore, 2003 | DOI

[20] F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York, 1951 | MR

[21] H.-H. Dai, X. Fan, “Asymptotically approximate model equations for weakly nonlinear long waves in compressible elastic rods and their comparisons with other simplified model equations”, Math. Mech. Solids, 9:1 (2004), 61–79 | MR

[22] F. E. Garbuzov, K. R. Khusnutdinova, I. V. Semenova, “On Boussinesq-type models for long longitudinal waves in elastic rods”, Wave Motion, 88 (2019), 129–143 | DOI | MR

[23] K. R. Khusnutdinova, A. M. Samsonov, A. S. Zakharov, “Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures”, Phys. Rev. E, 79:5 (2009), 056606, 14 pp. | DOI | MR

[24] K. R. Khusnutdinova, A. M. Samsonov, “Fission of a longitudinal strain solitary wave in a delaminated bar”, Phys. Rev. E, 77:6 (2008), 066603, 11 pp. | DOI | MR

[25] K. R. Khusnutdinova, M. R. Tranter, “Modelling of nonlinear wave scattering in a delaminated elastic bar”, Proc. Roy. Soc. London Ser. A, 471:2183 (2015), 20150584, 20 pp. | DOI | MR

[26] K. R. Khusnutdinova, M. R. Tranter, “On radiating solitary waves in bi-layers with delamination and coupled Ostrovsky equations”, Chaos, 27:1 (2017), 013112, 14 pp. | DOI | MR

[27] G. V. Dreiden, K. R. Khusnutdinova, A. M. Samsonov, I. V. Semenova, “Splitting induced generation of soliton trains in layered waveguides”, J. Appl. Phys., 107:3 (2010), 034909, 5 pp. ; “Bulk strain solitary waves in bonded layered polymeric bars with delamination”, 112:6 (2012), 063516, 10 pp. | DOI | DOI

[28] Y. Kodama, “Normal forms for weakly dispersive wave equations”, Phys. Lett. A, 112:5 (1985), 193–196 | DOI | MR

[29] A. S. Fokas, Q. M. Liu, “Asymptotic integrability of water waves”, Phys. Rev. Lett., 77:12 (1996), 2347–2351 | DOI | MR

[30] Y. Hiraoka, Y. Kodama, “Normal form and solitons”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, Heidelberg, 2009, 175–214 | DOI | MR

[31] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. VII, Teoriya uprugosti, Nauka, M., 1987 | MR

[32] P. A. Clarkson, R. J. LeVeque, R. Saxton, “Solitary-wave interaction in elastic rods”, Stud. Appl. Math., 75:2 (1986), 95–122 | DOI | MR

[33] M. P. Soerensen, P. L. Christiansen, P. S. Lomdahl, “Solitary waves in non-linear elastic rods. I”, J. Acoust. Soc. Amer., 76:3 (1984), 871–879 | DOI | MR

[34] A. V. Porubov, G. A. Maugin, “Longitudinal strain solitary waves in presence of cubic non-linearity”, Internat. J. Non-Linear Mech., 40:7 (2005), 1041–1048 | DOI | MR

[35] D. J. Benney, “Long non-linear waves in fluid flows”, J. Math. Phys., 45:1–4 (1966), 52–63 | DOI | MR

[36] C.-Y. Lee, R. C. Beardsley, “The generation of long nonlinear internal waves in weakly stratified shear flows”, J. Geophys. Res., 79:3 (1974), 453–462 | DOI

[37] C. Koop, G. Butler, “An investigation of internal solitary waves in a two-fluid system”, J. Fluid Mech., 112 (1981), 225–251 | DOI | MR

[38] K. Lamb, L. Yan, “The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory”, J. Phys. Oceanogr., 26:12 (1996), 2712–2734 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[39] T. R. Marchant, N. F. Smyth, “The extended Korteweg–de Vries equation and the resonant flow of a fluid over topography”, J. Fluid Mech., 221 (1990), 263–287 | DOI | MR

[40] R. Grimshaw, E. Pelinovsky, O. Poloukhina, “Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface”, Nonlinear Proc. Geophys., 9:3–4 (2002), 221–235 | DOI

[41] A. R. Giniyatullin, A. A. Kurkin, O. E. Kurkina, Yu. A. Stepanyants, “Obobschennoe uravnenie Kortevega–de Vriza dlya vnutrennikh voln v dvukhsloinoi zhidkosti”, Fundam. prikl. gidrofiz., 7:4 (2014), 16–28

[42] A. Karczewska, P. Rozmej, E. Infeld, “Shallow-water soliton dynamics beyond the Korteweg–de Vries equation”, Phys. Rev. E, 90:1 (2014), 012907, 8 pp. | DOI | MR

[43] K. R. Khusnutdinova, Y. A. Stepanyants, M. R. Tranter, “Soliton solutions to the fifth-order Korteweg–de Vries equation and their applications to surface and internal water waves”, Phys. Fluids, 30:2 (2018), 022104, arXiv: 1801.09035 | DOI

[44] H.-H. Dai, “Model equations for non-linear dispersive waves in a compressible Mooney–Rivlin rod”, Acta Mech., 127:1–4 (1998), 193–207 | DOI | MR

[45] H.-H. Dai, Y. Huo, “Solitary shock waves and other travelling waves in a general compressible hyperelastic rod”, Proc. Roy. Soc. London Ser. A, 456:1994 (2000), 331–363 | DOI | MR

[46] T. R. Marchant, N. F. Smyth, “Soliton interaction for the extended Korteweg–de Vries equation”, J. Appl. Math., 56:2 (1996), 157–176 | DOI | MR

[47] T. R. Marchant, N. F. Smyth, “An undular bore solution for the higher-order Korteweg–de Vries equation”, J. Phys. A: Math. Gen., 39:37 (2006), L563–L569 | DOI | MR

[48] A. V. Slyunyaev, O. E. Kurkina, “Utochnennaya evolyutsionnaya model na osnove uravneniya Gardnera dlya vnutrennikh voln v stratifitsirovannoi zhidkosti”, Izv. AIN im. A. M. Prokhorova. Ser. Prikl. matem. i mekh., 2006, no. 18, 82–90

[49] E. A. Ruvinskaya, O. E. Kurkina, A. A. Kurkin, Dinamika nelineinykh vnutrennikh gravitatsionnykh voln v sloistykh zhidkostyakh, NGTU, Nizhnii Novgorod, 2014

[50] E. N. Pelinovskii, O. E. Polukhina, K. Lemb, “Nelineinye vnutrennie volny v okeane, stratifitsirovannom po plotnosti i techeniyu”, Okeanologiya, 40:6 (2000), 805–815

[51] K. G. Lamb, O. Polukhina, T. Talipova, E. Pelinovsky, W. Xiao, A. Kurkin, “Breather generation in fully nonlinear models of a stratified fluid”, Phys. Rev. E, 75:4 (2007), 046306, 6 pp. | DOI | MR

[52] V. Maderich, T. Talipova, R. Grimshaw, E. Pelinovsky, B. H. Choi, I. Brovchenko, K. Terletska, D. C. Kim, “The transformation of an interfacial solitary wave of elevation at a bottom step”, Nonlinear Processes Geophys., 16:1 (2009), 33–42 | DOI

[53] V. Maderich, T. Talipova, R. Grimshaw, K. Terletska, I. Brovchenko, E. Pelinovsky, B. H. Choi, “Interaction of a large amplitude interfacial solitary wave of depression with a bottom step”, Phys. Fluids, 22:7 (2010), 076602, 12 pp. | DOI

[54] T. Talipova, K. Terletska, V. Maderich, I. Brovchenko, K. T. Jung, E. Pelinovsky, R. Grimshaw, “Internal solitary wave transformation over a bottom step: loss of energy”, Phys. Fluids, 25:3 (2013), 032110, 14 pp. | DOI

[55] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods. Evolution to Complex Geomenties and Applications to Fluid Dynamics, Springer, Berlin, 2007 | MR