Mots-clés : soliton.
@article{TMF_2020_202_3_a3,
author = {F. E. Garbuzov and Y. M. Beltukov and K. R. Khusnutdinova},
title = {Longitudinal bulk strain solitons in a~hyperelastic rod with quadratic and cubic nonlinearities},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {364--381},
year = {2020},
volume = {202},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a3/}
}
TY - JOUR AU - F. E. Garbuzov AU - Y. M. Beltukov AU - K. R. Khusnutdinova TI - Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 364 EP - 381 VL - 202 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a3/ LA - ru ID - TMF_2020_202_3_a3 ER -
%0 Journal Article %A F. E. Garbuzov %A Y. M. Beltukov %A K. R. Khusnutdinova %T Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 364-381 %V 202 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a3/ %G ru %F TMF_2020_202_3_a3
F. E. Garbuzov; Y. M. Beltukov; K. R. Khusnutdinova. Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 364-381. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a3/
[1] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | Zbl
[2] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[4] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR
[5] G. A. Maugin, Nonlinear waves in elastic crystals, Oxford Univ. Press, Oxford, 1999 | MR
[6] H.-H. Dai, Z. Cai, “Phase transition in a slender cylinder composed of an incompressible elastic material. I. Asymptotic model equation”, Proc. Roy. Soc. London Ser. A, 462:2065 (2006), 75–95 | DOI | MR
[7] A. Mayer, “Nonlinear surface acoustic waves: Theory”, Ultrasonics, 48:6–7 (2008), 478–481 | DOI
[8] P. Hess, A. M. Lomonosov, “Solitary surface acoustic waves and bulk solitons in nanosecond and picosecond laser ultrasonics”, Ultrasonics, 50:2 (2010), 167–171 | DOI
[9] J. Engelbrecht, A. Salupere, K. Tamm, “Waves in microstructured solids and the Boussinesq paradigm”, Wave Motion, 48:8 (2011), 717–726 | DOI | MR
[10] A. Pau, F. Lanza di Scalea, “Nonlinear guided wave propagation in prestressed plates”, J. Acoust. Soc. Am., 137:3 (2015), 1529–1540 | DOI
[11] T. Peets, K. Tamm, J. Engelbrecht, “On the role of nonlinearities in the Boussinesq-type wave equations”, Wave Motion, 71 (2017), 113–119 | DOI | MR
[12] G. A. Nariboli, A. Sedov, “Burgers–Korteweg de Vries equation for viscoelastic rods and plates”, J. Math. Anal. Appl., 32:3 (1970), 661–677 | DOI | MR
[13] L. A. Ostrovskii, A. M. Sutin, “Nelineinye uprugie volny v sterzhnyakh”, PMM, 41:3 (1977), 531–537 | DOI
[14] A. M. Samsonov, “Structural optimization in nonlinear wave propagation problems”, Structural Optimization Under Dynamical Loading, ed. U. Lepik, Tartu Univ. Press, Tartu, 1982, 75–76
[15] A. M. Samsonov, “Evolyutsiya solitona v nelineino uprugom sterzhne peremennogo secheniya”, Dokl. AN SSSR, 277:2 (1984), 332–335 | MR | Zbl
[16] A. V. Porubov, A. M. Samsonov, “Utochnenie modeli rasprostraneniya prodolnykh voln deformatsii v nelineino-uprugom sterzhne”, Pisma v ZhTF, 19 (1993), 26–29
[17] A. V. Porubov, M. G. Velarde, “Dispersive-dissipative solitons in nonlinear solids”, Wave Motion, 31:3 (2000), 197–207 | DOI | MR
[18] A. M. Samsonov, Strain Solitons in Solids and How to Construct Them, Monographs and Surveys in Pure and Applied Mathematics, 117, Chapman and Hall CRC, Boca Raton, FL, 2001 | DOI
[19] A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids, Series on Stability, Vibration and Control of Systems. Ser. A, 9, World Sci., Singapore, 2003 | DOI
[20] F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York, 1951 | MR
[21] H.-H. Dai, X. Fan, “Asymptotically approximate model equations for weakly nonlinear long waves in compressible elastic rods and their comparisons with other simplified model equations”, Math. Mech. Solids, 9:1 (2004), 61–79 | MR
[22] F. E. Garbuzov, K. R. Khusnutdinova, I. V. Semenova, “On Boussinesq-type models for long longitudinal waves in elastic rods”, Wave Motion, 88 (2019), 129–143 | DOI | MR
[23] K. R. Khusnutdinova, A. M. Samsonov, A. S. Zakharov, “Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures”, Phys. Rev. E, 79:5 (2009), 056606, 14 pp. | DOI | MR
[24] K. R. Khusnutdinova, A. M. Samsonov, “Fission of a longitudinal strain solitary wave in a delaminated bar”, Phys. Rev. E, 77:6 (2008), 066603, 11 pp. | DOI | MR
[25] K. R. Khusnutdinova, M. R. Tranter, “Modelling of nonlinear wave scattering in a delaminated elastic bar”, Proc. Roy. Soc. London Ser. A, 471:2183 (2015), 20150584, 20 pp. | DOI | MR
[26] K. R. Khusnutdinova, M. R. Tranter, “On radiating solitary waves in bi-layers with delamination and coupled Ostrovsky equations”, Chaos, 27:1 (2017), 013112, 14 pp. | DOI | MR
[27] G. V. Dreiden, K. R. Khusnutdinova, A. M. Samsonov, I. V. Semenova, “Splitting induced generation of soliton trains in layered waveguides”, J. Appl. Phys., 107:3 (2010), 034909, 5 pp. ; “Bulk strain solitary waves in bonded layered polymeric bars with delamination”, 112:6 (2012), 063516, 10 pp. | DOI | DOI
[28] Y. Kodama, “Normal forms for weakly dispersive wave equations”, Phys. Lett. A, 112:5 (1985), 193–196 | DOI | MR
[29] A. S. Fokas, Q. M. Liu, “Asymptotic integrability of water waves”, Phys. Rev. Lett., 77:12 (1996), 2347–2351 | DOI | MR
[30] Y. Hiraoka, Y. Kodama, “Normal form and solitons”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, Heidelberg, 2009, 175–214 | DOI | MR
[31] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. VII, Teoriya uprugosti, Nauka, M., 1987 | MR
[32] P. A. Clarkson, R. J. LeVeque, R. Saxton, “Solitary-wave interaction in elastic rods”, Stud. Appl. Math., 75:2 (1986), 95–122 | DOI | MR
[33] M. P. Soerensen, P. L. Christiansen, P. S. Lomdahl, “Solitary waves in non-linear elastic rods. I”, J. Acoust. Soc. Amer., 76:3 (1984), 871–879 | DOI | MR
[34] A. V. Porubov, G. A. Maugin, “Longitudinal strain solitary waves in presence of cubic non-linearity”, Internat. J. Non-Linear Mech., 40:7 (2005), 1041–1048 | DOI | MR
[35] D. J. Benney, “Long non-linear waves in fluid flows”, J. Math. Phys., 45:1–4 (1966), 52–63 | DOI | MR
[36] C.-Y. Lee, R. C. Beardsley, “The generation of long nonlinear internal waves in weakly stratified shear flows”, J. Geophys. Res., 79:3 (1974), 453–462 | DOI
[37] C. Koop, G. Butler, “An investigation of internal solitary waves in a two-fluid system”, J. Fluid Mech., 112 (1981), 225–251 | DOI | MR
[38] K. Lamb, L. Yan, “The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory”, J. Phys. Oceanogr., 26:12 (1996), 2712–2734 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[39] T. R. Marchant, N. F. Smyth, “The extended Korteweg–de Vries equation and the resonant flow of a fluid over topography”, J. Fluid Mech., 221 (1990), 263–287 | DOI | MR
[40] R. Grimshaw, E. Pelinovsky, O. Poloukhina, “Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface”, Nonlinear Proc. Geophys., 9:3–4 (2002), 221–235 | DOI
[41] A. R. Giniyatullin, A. A. Kurkin, O. E. Kurkina, Yu. A. Stepanyants, “Obobschennoe uravnenie Kortevega–de Vriza dlya vnutrennikh voln v dvukhsloinoi zhidkosti”, Fundam. prikl. gidrofiz., 7:4 (2014), 16–28
[42] A. Karczewska, P. Rozmej, E. Infeld, “Shallow-water soliton dynamics beyond the Korteweg–de Vries equation”, Phys. Rev. E, 90:1 (2014), 012907, 8 pp. | DOI | MR
[43] K. R. Khusnutdinova, Y. A. Stepanyants, M. R. Tranter, “Soliton solutions to the fifth-order Korteweg–de Vries equation and their applications to surface and internal water waves”, Phys. Fluids, 30:2 (2018), 022104, arXiv: 1801.09035 | DOI
[44] H.-H. Dai, “Model equations for non-linear dispersive waves in a compressible Mooney–Rivlin rod”, Acta Mech., 127:1–4 (1998), 193–207 | DOI | MR
[45] H.-H. Dai, Y. Huo, “Solitary shock waves and other travelling waves in a general compressible hyperelastic rod”, Proc. Roy. Soc. London Ser. A, 456:1994 (2000), 331–363 | DOI | MR
[46] T. R. Marchant, N. F. Smyth, “Soliton interaction for the extended Korteweg–de Vries equation”, J. Appl. Math., 56:2 (1996), 157–176 | DOI | MR
[47] T. R. Marchant, N. F. Smyth, “An undular bore solution for the higher-order Korteweg–de Vries equation”, J. Phys. A: Math. Gen., 39:37 (2006), L563–L569 | DOI | MR
[48] A. V. Slyunyaev, O. E. Kurkina, “Utochnennaya evolyutsionnaya model na osnove uravneniya Gardnera dlya vnutrennikh voln v stratifitsirovannoi zhidkosti”, Izv. AIN im. A. M. Prokhorova. Ser. Prikl. matem. i mekh., 2006, no. 18, 82–90
[49] E. A. Ruvinskaya, O. E. Kurkina, A. A. Kurkin, Dinamika nelineinykh vnutrennikh gravitatsionnykh voln v sloistykh zhidkostyakh, NGTU, Nizhnii Novgorod, 2014
[50] E. N. Pelinovskii, O. E. Polukhina, K. Lemb, “Nelineinye vnutrennie volny v okeane, stratifitsirovannom po plotnosti i techeniyu”, Okeanologiya, 40:6 (2000), 805–815
[51] K. G. Lamb, O. Polukhina, T. Talipova, E. Pelinovsky, W. Xiao, A. Kurkin, “Breather generation in fully nonlinear models of a stratified fluid”, Phys. Rev. E, 75:4 (2007), 046306, 6 pp. | DOI | MR
[52] V. Maderich, T. Talipova, R. Grimshaw, E. Pelinovsky, B. H. Choi, I. Brovchenko, K. Terletska, D. C. Kim, “The transformation of an interfacial solitary wave of elevation at a bottom step”, Nonlinear Processes Geophys., 16:1 (2009), 33–42 | DOI
[53] V. Maderich, T. Talipova, R. Grimshaw, K. Terletska, I. Brovchenko, E. Pelinovsky, B. H. Choi, “Interaction of a large amplitude interfacial solitary wave of depression with a bottom step”, Phys. Fluids, 22:7 (2010), 076602, 12 pp. | DOI
[54] T. Talipova, K. Terletska, V. Maderich, I. Brovchenko, K. T. Jung, E. Pelinovsky, R. Grimshaw, “Internal solitary wave transformation over a bottom step: loss of energy”, Phys. Fluids, 25:3 (2013), 032110, 14 pp. | DOI
[55] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods. Evolution to Complex Geomenties and Applications to Fluid Dynamics, Springer, Berlin, 2007 | MR