The Phillips spectrum and a model of wind-wave dissipation
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 353-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an extension of the kinetic equation developed by Newell and Zakharov in 2008. The new equation takes not only the resonant four-wave interactions but also the dissipation associated with the wave breaking into account. In the equation, we introduce a dissipation function that depends on the spectral energy flux. This function is determined up to a functional parameter, which should be optimally chosen based on a comparison with experiment. A kinetic equation with this dissipation function describes the usually experimentally observed transition from the Kolmogorov–Zakharov spectrum $E(\omega)\sim\omega^{-4}$ to the Phillips spectrum $E(\omega)\sim \omega^{-5}$. The version of the dissipation function expressed in terms of the energy spectrum can be used in problems of numerically modeling and predicting sea waves.
Keywords: Phillips spectrum, kinetic (Hasselmann) equation for water waves, Kolmogorov–Zakharov spectrum.
@article{TMF_2020_202_3_a2,
     author = {S. I. Badulin and V. E. Zakharov},
     title = {The~Phillips spectrum and a~model of wind-wave dissipation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {353--363},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a2/}
}
TY  - JOUR
AU  - S. I. Badulin
AU  - V. E. Zakharov
TI  - The Phillips spectrum and a model of wind-wave dissipation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 353
EP  - 363
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a2/
LA  - ru
ID  - TMF_2020_202_3_a2
ER  - 
%0 Journal Article
%A S. I. Badulin
%A V. E. Zakharov
%T The Phillips spectrum and a model of wind-wave dissipation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 353-363
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a2/
%G ru
%F TMF_2020_202_3_a2
S. I. Badulin; V. E. Zakharov. The Phillips spectrum and a model of wind-wave dissipation. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 353-363. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a2/

[1] O. M. Phillips, “The equilibrium range in the spectrum of wind-generated waves”, J. Fluid Mech., 4 (1958), 426–434 | DOI | MR

[2] E. A. Kuznetsov, “Spektry turbulentnosti, porozhdaemye singulyarnostyami”, Pisma v ZhETF, 80:2 (2004), 92–98 | DOI

[3] P. M. Lushnikov, S. A. Dyachenko, D. A. Silantyev, “New conformal mapping for adaptive resolving of the complex singularities of Stokes wave”, Proc. Roy. Soc. London Ser. A, 473:2202 (2017), 20170198, 19 pp., arXiv: 1703.06343 | DOI | MR

[4] S. A. Dyachenko, P. M. Lushnikov, A. O. Korotkevich, “Branch cuts of Stokes wave on deep water. Part I: Numerical solution and Padé approximation”, Stud. Appl. Math., 173:4 (2016), 419–472 | DOI | MR

[5] A. C. Newell, V. E. Zakharov, “The role of the generalized Phillips' spectrum in wave turbulence”, Phys. Lett. A, 372:23 (2008), 4230–4233 | DOI

[6] O. M. Phillips, “Spectral and statistical properties of the equilibrium range in wind-generated gravity waves”, J. Fluid Mech., 156 (1985), 505–531 | DOI

[7] S. A. Kitaigorodskii, “Nekotorye prilozheniya metodov teorii podobiya pri analize vetrovogo volneniya kak veroyatnostnogo protsessa”, Izv. AN SSSR. Ser. Geofiz., 1962, no. 1, 105–117

[8] Y. Toba, “Local balance in the air-sea boundary processes. II. Partition of wind stress to waves and current”, J. Oceanogr. Soc. Japan, 29:2 (1973), 70–75 | DOI

[9] S. Kawai, K. Okada, Y. Toba, “Field data support of three-seconds power law and ${gu*\sigma^{-4}}$-spectral form for growing wind waves”, J. Oceanogr. Soc. Japan, 33 (1977), 137–150 | DOI

[10] H. Mitsuyasu, H. Tasai, F. Suhara, T. Mizuno, S. Ohkusu, T. Honda, K. Rikiishi, “Observation of power spectrum of ocean waves using a clover-leaf buoy”, J. Phys. Oceanogr., 10 (1982), 286–296 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] G. Z. Forristall, “Measurements of a saturated range in ocean wave spectra”, J. Geophys. Res., 86:C9 (1981), 8075–8084 | DOI

[12] K. K. Kahma, “A study of the growth of the wave spectrum with fetch”, J. Phys. Oceanogr., 11:11 (1981), 1503–1515 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[13] S. I. Badulin, V. E. Zakharov, “Ocean swell within the kinetic equation for water waves”, Nonlinear Proc. Geophys., 24:2 (2017), 237–253, arXiv: 1607.05313 | DOI

[14] V. E. Zakharov, S. I. Badulin, “O balanse energii vetrovykh voln”, Dokl. RAN, 440:5 (2011), 691–695 | DOI

[15] V. E. Zakharov, “Energy balance in a wind-driven sea”, Phys. Scr., T142 (2010), 014052, 14 pp. | DOI

[16] V. E. Zakharov, S. I. Badulin, V. V. Geogjaev, A. N. Pushkarev, “Weak-turbulent theory of wind-driven sea”, Earth and Space Sci., 6:4 (2019), 540–556 | DOI

[17] V. E. Zakharov, N. N. Filonenko, “Spektr energii dlya stokhasticheskikh kolebanii poverkhnosti zhidkosti”, Dokl. AN SSSR, 170:6 (1966), 1292–1295

[18] V. V. Geogdzhaev, V. E. Zakharov, “Chislennyi i analiticheskii raschet parametrov stepennykh spektrov gravitatsionnykh voln na glubokoi vode”, Pisma v ZhETF, 106:3 (2017), 175–178 | DOI | DOI

[19] V. E. Zakharov, V. S. L'vov, G. Falkovich, Kolmogorov Spectra of Turbulence I. Wave Turbulence, Springer, Berlin, 1992 | DOI

[20] K. Hasselmann, “On the nonlinear energy transfer in a gravity wave spectrum. Part 1. General theory”, J. Fluid Mech., 12 (1962), 481–500 | DOI | MR

[21] L. Cavaleri, J.-H. G. M. Alves, F. Ardhuin et al. [The WISE Group], “Wave modelling – the state of the art”, Progr. Ocean., 75:4 (2007), 603–674 | DOI

[22] S. I. Badulin, A. N. Pushkarev, D. Resio, V. E. Zakharov, “Self-similarity of wind-driven seas”, Nonlinear Proc. Geophys., 12:6 (2005), 891–945 | DOI

[23] V. E. Zakharov, “Analytic theory of a wind-driven sea”, Procedia IUTAM (IUTAM Symposium Wind Waves, London, UK, 4–8 September 2017), v. 26, eds. R. Grimshaw, J. Hunt, E. Johnson, Elsevier, Amsterdam, 2018, 43–58, arXiv: 1802.05216

[24] A. I. Dyachenko, A. O. Korotkevich, V. E. Zakharov, “Weak turbulent Kolmogorov spectrum for surface gravity waves”, Phys. Rev. Lett., 92:13 (2004), 134501, 4 pp., arXiv: physics/0308099 | DOI

[25] S. Yu. Annenkov, V. I. Shrira, “Role of non-resonant interactions in the evolution of nonlinear random water wave fields”, J. Fluid Mech., 561 (2006), 181–207 | DOI | MR

[26] A. O. Korotkevich, A. N. Pushkarev, D. Resio, V. E. Zakharov, “Numerical verification of the weak turbulent model for swell evolution”, Eur. J. Mech. B/Fluids, 27:4 (2008), 361–387 | DOI | MR

[27] A. O. Korotkevich, V. E. Zakharov, On the applicability of the Hasselmann kinetic equation to the Phillips spectrum, arXiv: 1212.6522

[28] A. O. Korotkevich, A. O. Prokofev, V. E. Zakharov, “O tempe dissipatsii okeanskikh voln, vyzvannoi ikh obrusheniem”, Pisma v ZhETF, 109:5 (2019), 312–319 | DOI | DOI

[29] V. E. Zakharov, M. M. Zaslavskii, “Forma spektra energonesuschikh komponent vodnoi poverkhnosti v slaboturbulentnoi teorii vetrovykh voln”, Izv. AN SSSR. Fiz. atmosf. i okeana, 19:3 (1983), 282–291

[30] S. I. Badulin, V. V. Geogdzhaev, “Otsenka parametrov rosta vetrovogo volneniya po spektralnym potokam”, Izv. vuzov. Radiofizika, 61:8–9 (2018), 614–621 | DOI

[31] M. A. Donelan, J. Hamilton, W. H. Hui, “Directional spectra of wind-generated wave”, Phil. Trans. Roy. Soc. London Ser. A, 315:1534 (1985), 509–562 | DOI

[32] J. A. Battjes, T. J. Zitman, L. H. Holthuijsen, “A reanalysis of the spectra observed in JONSWAP”, J. Phys. Oceanogr., 17:8 (1987), 1288–1295 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[33] A. N. Pushkarev, D. Resio, V. E. Zakharov, “Weak turbulent approach to the wind-generated gravity sea waves”, Phys. D, 184:1–4 (2003), 29–63 | DOI | MR

[34] O. M. Phillips, “On the response of short ocean wave components at a fixed wavenumber to ocean current variations”, J. Phys. Oceanogr., 14:9 (1984), 1425–1433 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[35] G. J. Komen, S. Hasselmann, K. Hasselmann, “On the existence of a fully developed wind-sea spectrum”, J. Phys. Oceanogr., 14:8 (1984), 1271–1285 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[36] P. A. Hwang, D. W. Wang, “Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum”, J. Phys. Oceanogr., 31:5 (2001), 1346–1360 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[37] P. A. Hwang, “Spectral signature of wave breaking in surface wave components of intermediate-length scale”, J. Marine Systems, 66:1–4 (2007), 28–37 | DOI

[38] M. A. Donelan, “A nonlinear dissipation function due to wave breaking”, ECMWF Workshop on Ocean Wave Forecasting (Shinfield Park, Reading, UK, 2–4 July, 2001), ECMWF, 2001, 87–94

[39] A. J. Van der Westhuysen, M. Zijlema, J. A. Battjes, “Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water”, Coast. Eng., 54:2 (2007), 151–170 | DOI

[40] S. I. Badulin, V. E. Zakharov, The generalized Phillips' spectra and new dissipation function for wind-driven seas, arXiv: 1212.0963