Integrable evolution systems of geometric type
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 492-501

Voir la notice de l'article provenant de la source Math-Net.Ru

We present necessary conditions for the integrability of multicomponent third-order evolution systems of geometric type. For the considered examples, the affine connected space determining the system turns out to be symmetric in the case of zero torsion. In the case of the connection with nonzero torsion, the space is generated by a Bol loop.
Keywords: integrable system, symmetry, affine connected space.
@article{TMF_2020_202_3_a13,
     author = {V. V. Sokolov},
     title = {Integrable evolution systems of geometric type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {492--501},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/}
}
TY  - JOUR
AU  - V. V. Sokolov
TI  - Integrable evolution systems of geometric type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 492
EP  - 501
VL  - 202
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/
LA  - ru
ID  - TMF_2020_202_3_a13
ER  - 
%0 Journal Article
%A V. V. Sokolov
%T Integrable evolution systems of geometric type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 492-501
%V 202
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/
%G ru
%F TMF_2020_202_3_a13
V. V. Sokolov. Integrable evolution systems of geometric type. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 492-501. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/