Integrable evolution systems of geometric type
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 492-501
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present necessary conditions for the integrability of multicomponent third-order evolution systems of geometric type. For the considered examples, the affine connected space determining the system turns out to be symmetric in the case of zero torsion. In the case of the connection with nonzero torsion, the space is generated by a Bol loop.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
integrable system, symmetry, affine connected space.
                    
                  
                
                
                @article{TMF_2020_202_3_a13,
     author = {V. V. Sokolov},
     title = {Integrable evolution systems of geometric type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {492--501},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/}
}
                      
                      
                    V. V. Sokolov. Integrable evolution systems of geometric type. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 492-501. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/
