Integrable evolution systems of geometric type
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 492-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present necessary conditions for the integrability of multicomponent third-order evolution systems of geometric type. For the considered examples, the affine connected space determining the system turns out to be symmetric in the case of zero torsion. In the case of the connection with nonzero torsion, the space is generated by a Bol loop.
Keywords: integrable system, symmetry, affine connected space.
@article{TMF_2020_202_3_a13,
     author = {V. V. Sokolov},
     title = {Integrable evolution systems of geometric type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {492--501},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/}
}
TY  - JOUR
AU  - V. V. Sokolov
TI  - Integrable evolution systems of geometric type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 492
EP  - 501
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/
LA  - ru
ID  - TMF_2020_202_3_a13
ER  - 
%0 Journal Article
%A V. V. Sokolov
%T Integrable evolution systems of geometric type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 492-501
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/
%G ru
%F TMF_2020_202_3_a13
V. V. Sokolov. Integrable evolution systems of geometric type. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 492-501. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/

[1] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR

[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[3] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[4] S. I. Svinolupov, “Iordanovy algebry i obobschennye uravneniya Kortevega–de Friza”, TMF, 87:3 (1991), 391–403 | DOI | MR | Zbl

[5] N. Jacobson, Structure and Representations of Jordan Algebras, American Mathematical Society Colloquium Publications, 39, AMS, Providence, RI, 1968 | DOI | MR

[6] E. I. Zelmanov, “O pervichnykh iordanovykh troinykh sistemakh. III”, Sib. matem. zhurn., 26:1 (1985), 71–82 | MR

[7] I. V. Habibullin, V. V. Sokolov, R. I. Yamilov, “Multi-component integrable systems and non-associative structures”, Nonlinear Physics: Theory and Experiment (Le Sirenuse, Gallipoli (Lecce), Italy, 29\;June\;–7\;July, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Sci., Singapore, 1996, 139–168 | MR

[8] A. G. Meshkov, V. V. Sokolov, “Classification of integrable vector equations of geometric type”, J. Geom. Phys., 149 (2020), 103581, 12 pp., arXiv: 1904.09351 | DOI | MR

[9] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What Is Integrability?, Springer Series in Nonlinear Dynamics, ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR

[10] A. V. Mikhailov, V. V. Sokolov, “Symmetries of differential equations and the problem of integrability”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 19–88 | DOI | MR

[11] A. G. Meshkov, V. V. Sokolov, “Giperbolicheskie uravneniya s simmetriyami tretego poryadka”, TMF, 166:1 (2011), 51–67 | DOI | DOI | MR

[12] B. A. Kupershmidt, KP or mKP. Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, Mathematical Surveys and Monographs, 78, AMS, Providence, RI, 2000 | DOI | MR

[13] S. I. Svinolupov, V. V. Sokolov, “Deformatsii iordanovykh troinykh sistem i integriruemye uravneniya”, TMF, 108:3 (1996), 388–392 | DOI | DOI | MR | Zbl

[14] A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations on the $N$-dimensional sphere”, Commun. Math. Phys., 232:1 (2002), 1–18 | DOI | MR

[15] P. O. Mikheev, L. V. Sabinin, “Gladkie kvazigruppy i geometriya”, Itogi nauki i tekhn. Ser. Probl. geom., 20 (1988), 75–110 | DOI | MR