@article{TMF_2020_202_3_a13,
author = {V. V. Sokolov},
title = {Integrable evolution systems of geometric type},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {492--501},
year = {2020},
volume = {202},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/}
}
V. V. Sokolov. Integrable evolution systems of geometric type. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 492-501. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a13/
[1] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR
[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[3] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[4] S. I. Svinolupov, “Iordanovy algebry i obobschennye uravneniya Kortevega–de Friza”, TMF, 87:3 (1991), 391–403 | DOI | MR | Zbl
[5] N. Jacobson, Structure and Representations of Jordan Algebras, American Mathematical Society Colloquium Publications, 39, AMS, Providence, RI, 1968 | DOI | MR
[6] E. I. Zelmanov, “O pervichnykh iordanovykh troinykh sistemakh. III”, Sib. matem. zhurn., 26:1 (1985), 71–82 | MR
[7] I. V. Habibullin, V. V. Sokolov, R. I. Yamilov, “Multi-component integrable systems and non-associative structures”, Nonlinear Physics: Theory and Experiment (Le Sirenuse, Gallipoli (Lecce), Italy, 29\;June\;–7\;July, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Sci., Singapore, 1996, 139–168 | MR
[8] A. G. Meshkov, V. V. Sokolov, “Classification of integrable vector equations of geometric type”, J. Geom. Phys., 149 (2020), 103581, 12 pp., arXiv: 1904.09351 | DOI | MR
[9] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What Is Integrability?, Springer Series in Nonlinear Dynamics, ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR
[10] A. V. Mikhailov, V. V. Sokolov, “Symmetries of differential equations and the problem of integrability”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 19–88 | DOI | MR
[11] A. G. Meshkov, V. V. Sokolov, “Giperbolicheskie uravneniya s simmetriyami tretego poryadka”, TMF, 166:1 (2011), 51–67 | DOI | DOI | MR
[12] B. A. Kupershmidt, KP or mKP. Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, Mathematical Surveys and Monographs, 78, AMS, Providence, RI, 2000 | DOI | MR
[13] S. I. Svinolupov, V. V. Sokolov, “Deformatsii iordanovykh troinykh sistem i integriruemye uravneniya”, TMF, 108:3 (1996), 388–392 | DOI | DOI | MR | Zbl
[14] A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations on the $N$-dimensional sphere”, Commun. Math. Phys., 232:1 (2002), 1–18 | DOI | MR
[15] P. O. Mikheev, L. V. Sabinin, “Gladkie kvazigruppy i geometriya”, Itogi nauki i tekhn. Ser. Probl. geom., 20 (1988), 75–110 | DOI | MR