Keywords: continuum Hamiltonian system, vorticity, two-dimensional hydrodynamics.
@article{TMF_2020_202_3_a12,
author = {L. I. Piterbarg},
title = {Hamiltonian description of vortex systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {474--491},
year = {2020},
volume = {202},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/}
}
L. I. Piterbarg. Hamiltonian description of vortex systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 474-491. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/
[1] V. E. Zakharov, E. A. Kuznetsov, “Gamiltonovskii formalizm dlya nelineinykh voln”, UFN, 167:11 (1997), 1137–1167 | DOI | DOI
[2] V. P. Goncharov, V. I. Pavlov, Problemy gidrodinamiki v gamiltonovom opisanii, Izd-vo Mosk. un-ta, M., 1993 | MR
[3] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, URSS, M., 2017 | DOI | MR
[4] G. S. Deem, N. J. Zabusky, “Vortex waves: stationary `$V$ states', interactions, recurrence, and breaking”, Phys. Rev. Lett., 40:13 (1978), 859–877 | DOI
[5] V. P. Goncharov, V. I. Pavlov, “Gamiltonova konturnaya dinamika”, Fundamentalnye i prikladnye problemy teorii vikhrei, eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, In-t komp. issl., M.–Izhevsk, 2003, 179–237 | MR
[6] M. V. Melander, A. S. Styczek, N. J. Zabusky, “Elliptically desingularized vortex model for the two-dimensional Euler equations”, Phys. Rev. Lett., 53:13 (1984), 1222–1245 | DOI
[7] R. J. Trudeau, Introduction to Graph Theory, Kent State Univ. Press, Kent, OH, 1976 | MR
[8] P. Meunier, S. Le Dizés, T. Leweke, “Physics of vortex merging”, C. R. Physique, 6:4–5 (2005), 431–450 | DOI
[9] A. S. Monin, A. M. Yaglom, Statisticheskaya gidrodinamika, Nauka, M., 1965 | MR
[10] L. I. Piterbarg, “The Poisson bracket for 2D hydrodynamics reduces to the Gardner bracket”, Phys. Lett. A, 205:2–3 (1995), 149–157 | DOI | MR
[11] G. R. Kirchhoff, Vorlsungen über Mathematische Physik, v. 1, B. G. Teubner, Leipzig, 1876
[12] L. I. Piterbarg, “Hamiltonian description of dipoles on the plane and sphere”, Phys. Lett. A, 372:12 (2008), 2032–2038 | DOI | MR
[13] G. Sutyrin, “On vortex intensification due to stretching out of weak satellites”, Phys. Fluid, 31:7 (2019), 075103 | DOI
[14] H. Aref, “Integrable, chaotic, and turbulent vortex motion in two-dimensional flows”, Ann. Rev. Fluid Mech., 15 (1983), 345–389 | DOI
[15] M. A. Brutyan, P. L. Krapivskii, “Gamiltonova formulirovka i osnovnye zakony sokhraneniya dlya modeli malykh ellipticheskikh vikhrei”, PMM, 52:1 (1988), 164–167 | DOI
[16] V. E. Zakharov, L. I. Piterbarg, “Canonical variables for Rossby waves and plasma drift waves”, Phys. Lett. A, 126:8–9 (1988), 497–501 | DOI | MR
[17] L. I. Piterbarg, “Hamiltonian formalism for Rossby waves”, Nonlinear Waves and Weak Turbulence, American Mathematical Society Translations: Ser. 2, 182, AMS, Providence, RI, 1998, 131–165 | MR