Hamiltonian description of vortex systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 474-491

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of two-dimensional ideal hydrodynamics, we define a vortex system as a smooth vorticity function with a few local positive maximums and negative minimums separated by curves of zero vorticity. We discuss the invariants of such structures that follow from the vorticity conservation law and the invertibility of Lagrangian motion. Introducing new functional variables diagonalizing the original noncanonical Poisson bracket, we develop a Hamiltonian formalism for vortex systems.
Mots-clés : vortex, Poisson bracket
Keywords: continuum Hamiltonian system, vorticity, two-dimensional hydrodynamics.
@article{TMF_2020_202_3_a12,
     author = {L. I. Piterbarg},
     title = {Hamiltonian description of vortex systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {474--491},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/}
}
TY  - JOUR
AU  - L. I. Piterbarg
TI  - Hamiltonian description of vortex systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 474
EP  - 491
VL  - 202
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/
LA  - ru
ID  - TMF_2020_202_3_a12
ER  - 
%0 Journal Article
%A L. I. Piterbarg
%T Hamiltonian description of vortex systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 474-491
%V 202
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/
%G ru
%F TMF_2020_202_3_a12
L. I. Piterbarg. Hamiltonian description of vortex systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 474-491. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/