Hamiltonian description of vortex systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 474-491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of two-dimensional ideal hydrodynamics, we define a vortex system as a smooth vorticity function with a few local positive maximums and negative minimums separated by curves of zero vorticity. We discuss the invariants of such structures that follow from the vorticity conservation law and the invertibility of Lagrangian motion. Introducing new functional variables diagonalizing the original noncanonical Poisson bracket, we develop a Hamiltonian formalism for vortex systems.
Mots-clés : vortex, Poisson bracket
Keywords: continuum Hamiltonian system, vorticity, two-dimensional hydrodynamics.
@article{TMF_2020_202_3_a12,
     author = {L. I. Piterbarg},
     title = {Hamiltonian description of vortex systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {474--491},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/}
}
TY  - JOUR
AU  - L. I. Piterbarg
TI  - Hamiltonian description of vortex systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 474
EP  - 491
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/
LA  - ru
ID  - TMF_2020_202_3_a12
ER  - 
%0 Journal Article
%A L. I. Piterbarg
%T Hamiltonian description of vortex systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 474-491
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/
%G ru
%F TMF_2020_202_3_a12
L. I. Piterbarg. Hamiltonian description of vortex systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 474-491. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a12/

[1] V. E. Zakharov, E. A. Kuznetsov, “Gamiltonovskii formalizm dlya nelineinykh voln”, UFN, 167:11 (1997), 1137–1167 | DOI | DOI

[2] V. P. Goncharov, V. I. Pavlov, Problemy gidrodinamiki v gamiltonovom opisanii, Izd-vo Mosk. un-ta, M., 1993 | MR

[3] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, URSS, M., 2017 | DOI | MR

[4] G. S. Deem, N. J. Zabusky, “Vortex waves: stationary `$V$ states', interactions, recurrence, and breaking”, Phys. Rev. Lett., 40:13 (1978), 859–877 | DOI

[5] V. P. Goncharov, V. I. Pavlov, “Gamiltonova konturnaya dinamika”, Fundamentalnye i prikladnye problemy teorii vikhrei, eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, In-t komp. issl., M.–Izhevsk, 2003, 179–237 | MR

[6] M. V. Melander, A. S. Styczek, N. J. Zabusky, “Elliptically desingularized vortex model for the two-dimensional Euler equations”, Phys. Rev. Lett., 53:13 (1984), 1222–1245 | DOI

[7] R. J. Trudeau, Introduction to Graph Theory, Kent State Univ. Press, Kent, OH, 1976 | MR

[8] P. Meunier, S. Le Dizés, T. Leweke, “Physics of vortex merging”, C. R. Physique, 6:4–5 (2005), 431–450 | DOI

[9] A. S. Monin, A. M. Yaglom, Statisticheskaya gidrodinamika, Nauka, M., 1965 | MR

[10] L. I. Piterbarg, “The Poisson bracket for 2D hydrodynamics reduces to the Gardner bracket”, Phys. Lett. A, 205:2–3 (1995), 149–157 | DOI | MR

[11] G. R. Kirchhoff, Vorlsungen über Mathematische Physik, v. 1, B. G. Teubner, Leipzig, 1876

[12] L. I. Piterbarg, “Hamiltonian description of dipoles on the plane and sphere”, Phys. Lett. A, 372:12 (2008), 2032–2038 | DOI | MR

[13] G. Sutyrin, “On vortex intensification due to stretching out of weak satellites”, Phys. Fluid, 31:7 (2019), 075103 | DOI

[14] H. Aref, “Integrable, chaotic, and turbulent vortex motion in two-dimensional flows”, Ann. Rev. Fluid Mech., 15 (1983), 345–389 | DOI

[15] M. A. Brutyan, P. L. Krapivskii, “Gamiltonova formulirovka i osnovnye zakony sokhraneniya dlya modeli malykh ellipticheskikh vikhrei”, PMM, 52:1 (1988), 164–167 | DOI

[16] V. E. Zakharov, L. I. Piterbarg, “Canonical variables for Rossby waves and plasma drift waves”, Phys. Lett. A, 126:8–9 (1988), 497–501 | DOI | MR

[17] L. I. Piterbarg, “Hamiltonian formalism for Rossby waves”, Nonlinear Waves and Weak Turbulence, American Mathematical Society Translations: Ser. 2, 182, AMS, Providence, RI, 1998, 131–165 | MR