Semiclassical expansion of quantum gases into a vacuum
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 458-473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the Gross–Pitaevskii equation, we consider the problem of the expansion of quantum gases into a vacuum. For them, the chemical potential $\mu$ has a power-law dependence on the density $n$ with the exponent $\nu=2/D$, where $D$ is the space dimension. For gas condensates of Bose atoms as the temperature $T\to0$, $s$ scattering gives the main contribution to the interaction of atoms in the leading order in the gas parameter. Therefore, the exponent $\nu=1$ for an arbitrary $D$. In the three-dimensional case, $\nu=2/3$ is realized for condensates of Fermi atoms in the so-called unitary limit. For $\nu=2/D$, the Gross–Pitaevskii equation has an additional symmetry under Talanov transformations of the conformal type, which were first found for the stationary self-focusing of light. A consequence of this symmetry is the virial theorem relating the average size $R$ of an expanding gas cloud to its Hamiltonian. The quantity $R$ asymptotically increases linearly with time as $t\to\infty$. In the semiclassical limit, the equations of motion coincide with those of the hydrodynamics of an ideal gas with the adiabatic exponent $\gamma=1+2/D$. In this approximations, self-similar solutions describe angular deformations of the gas cloud against the background of the expanding gas in the framework of equations of the Ermakov–Ray–Reid type.
Keywords: Gross–Pitaevskii equation, Thomas–Fermi approximation, quantum gas.
@article{TMF_2020_202_3_a11,
     author = {E. A. Kuznetsov and M. Yu. Kagan},
     title = {Semiclassical expansion of quantum gases into a~vacuum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {458--473},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a11/}
}
TY  - JOUR
AU  - E. A. Kuznetsov
AU  - M. Yu. Kagan
TI  - Semiclassical expansion of quantum gases into a vacuum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 458
EP  - 473
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a11/
LA  - ru
ID  - TMF_2020_202_3_a11
ER  - 
%0 Journal Article
%A E. A. Kuznetsov
%A M. Yu. Kagan
%T Semiclassical expansion of quantum gases into a vacuum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 458-473
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a11/
%G ru
%F TMF_2020_202_3_a11
E. A. Kuznetsov; M. Yu. Kagan. Semiclassical expansion of quantum gases into a vacuum. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 458-473. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a11/

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor”, Science, 269:5221 (1995), 198–201 | DOI

[2] C. C. Bradley, C. A. Sackett, J. J. Tollett, R. G. Hulet, “Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions”, Phys. Rev. Lett., 75:9 (1995), 1687–1690 | DOI

[3] K. B. Davis, M.-O. Mewes, M. R. Andrew, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms”, Phys. Rev. Lett., 75:22 (1995), 3969–3973

[4] V. E. Zakharov, E. A. Kuznetsov, “Solitony i kollapsy: dva stsenariya evolyutsii nelineinykh volnovykh sistem”, UFN, 182:6 (2012), 569–592 | DOI | DOI

[5] H. Feshbach, “Unified theory of nuclear reactions”, Ann. Phys., 5:4 (1958), 357–390 | DOI | MR

[6] C. Chin, R. Grimm, P. Julienne, E. Tiesinga, “Feshbach resonances in ultracold gases”, Rev. Modern Phys., 82:2 (2010), 1225–1286 | DOI

[7] L. P. Pitaevskii, “Sverkhtekuchaya fermi-zhidkost v unitarnom rezhime”, UFN, 178:6 (2008), 633–639 | DOI | DOI

[8] V. I. Talanov, “O fokusirovke sveta v kubichnykh sredakh”, Pisma v ZhETF, 11:6 (1970), 303–305

[9] S. I. Anisimov, Yu. I. Lysikov, “O rasshirenii gazovogo oblaka v vakuum”, PMM, 34:5 (1970), 926–929 | DOI

[10] S. N. Vlasov, V. A. Petrischev, V. I. Talanov, “Usrednennoe opisanie volnovykh puchkov v lineinykh i nelineinykh sredakh (metod momentov)”, Izv. vuzov. Radiofizika, 14:9 (1971), 1353–1363 | DOI

[11] K. Rypdal, J. Juul Rasmussen, “Blow-up in nonlinear Schroedinger equations-II similarity structure of the blow-up singularity”, Phys. Scr., 33:6 (1986), 498–504 | DOI | MR

[12] E. A. Kuznetsov, S. K. Turitsyn, “Talanov transformations in self-focusing problems and instability of stationary waveguides”, Phys. Lett. A, 112:6–7 (1985), 273–275 | DOI

[13] L. V. Ovsyannikov, “Novoe reshenie uravnenii gidrodinamiki”, Dokl. AN SSSR, 111:1 (1956), 47–49 | MR

[14] S. I. Anisimov, V. A. Khokhlov, Instabilities in Laser-Matter Interaction, CRC Press, Boca Raton–London–Tokyo, 1995

[15] Yu. V. Likhanova, S. B. Medvedev, M. P. Fedoruk, P. L. Chapovskii, “Vzaimodeistvie dvukh fraktsii v vyrozhdennom boze-gaze pri konechnykh temperaturakh”, Pisma v ZhETF, 103:6, 452-457 | DOI | DOI

[16] K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms”, Science, 298:5601 (2002), 2179–2182, arXiv: cond-mat/0212463 | DOI

[17] E. Elliott, J. A. Joseph, J. E. Thomas, “Observation of conformal symmetry breaking and scale invariance in expanding Fermi gases”, Phys. Rev. Lett., 112:4 (2014), 040405, 5 pp., arXiv: 1308.3162 | DOI

[18] Yu. Kagan, E. L. Surkov, G. V. Shlyapnikov, “Evolution of a bose gas in anisotropic time-dependent traps”, Phys. Rev. A, 55:1 (1997), R18–R21 | DOI

[19] V. P. Ermakov, Differentsialnye uravneniya vtorogo poryadka. Usloviya integriruemosti v konechnom vide, Iz lektsii po integrirovaniyu differentsialnykh uravnenii, Univ. tip., Kiev, 1880 | DOI

[20] F. Calogero, “Solution of a three-body problem in one dimension”, J. Math. Phys., 10:12 (1969), 2191–2196 | DOI

[21] L. P. Pitaevskii, A. Rosch, “Breathing modes and hidden symmetry of trapped atoms in two dimensions”, Phys. Rev. A, 55:2 (1997), R853–R856, arXiv: cond-mat/9608135 | DOI

[22] J. R. Ray, J. L. Reid, “More exact invariants for the time-dependent harmonic oscillator”, Phys. Lett. A, 71:4 (1979), 317–318 | DOI | MR

[23] C. Rogers, W. K. Schief, “Multi-component Ermakov systems: structure and linearization”, J. Math. Anal. Appl., 198:1 (1996), 194–220 | DOI | MR

[24] E. P. Gross, “Structure of a quantized vortex in boson systems”, Nuovo Cimento, 20:3 (1961), 454–477 | DOI | MR

[25] J. Joseph, B. Clancy, L. Luo, J. Kinast, A. Turlapov, J. E. Thomas, “Measurement of sound velocity in a Fermi gas near a Feshbach resonance”, Phys. Rev. Lett., 98:17 (2007), 170401, 4 pp. | DOI

[26] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, R. Grimm, “Crossover from a molecular Bose–Einstein condensate to a degenerate Fermi gas”, Phys. Rev. Lett., 92:12 (2004), 120401, 4 pp., arXiv: cond-mat/0401109 | DOI

[27] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, M. W. Zwierlein, “Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas”, Science, 335:6068 (2012), 563–567, arXiv: 1110.3309 | DOI

[28] G. Zürn, T. Lompe, A. N. Wenz, S. Jochim, P. S. Julienne, J. M. Hutson, “Precise characterization of $^{6}\mathrm{Li}$ Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules”, Phys. Rev. Lett., 110:13 (2013), 135301, 5 pp., arXiv: 1211.1512 | DOI

[29] A. V. Turlapov, M. Yu. Kagan, “Fermi–to–Bose crossover in a trapped quasi-2d gas of fermionic atoms”, J. Phys: Condens. Matter, 29:38 (2017), 383004, 22 pp., arXiv: 1702.04145 | DOI

[30] M. Yu. Kagan, A. V. Turlapov, “Krossover BKSh–BEK, kollektivnye vozbuzhdeniya i gidrodinamika sverkhtekuchikh kvantovykh zhidkostei i gazov”, UFN, 189:3 (2019), 225–261 | DOI | DOI

[31] F. J. Dyson, “Dynamics of a spinning gas cloud”, J. Math. Mech., 18:1 (1968), 91–101 | Zbl

[32] Ya. B. Zeldovich, “Nyutonovskoe i einshteinovskoe dvizhenie odnorodnogo veschestva”, Astron. zhurn., 41:5 (1964), 873–883 | MR

[33] O. I. Bogoyavlensky, “Nonlinear oscillation regimes in some physical problems”, Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Physics, 93, eds. G. Casati, J. Ford, Springer, Berlin, 1979, 151–162 | DOI | MR

[34] A. V. Borisov, I. S. Mamaev, A. A. Kilin, “Gamiltonova dinamika zhidkikh i gazovykh samogravitiruyuschikh ellipsoidov”, Nelineinaya dinamika, 4:4 (2008), 363–407

[35] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR | MR

[36] B. Gaffet, “Expanding gas clouds of ellipsoidal shape: new exact solutions”, J. Fluid Mech., 325 (1996), 113–144 | DOI | MR

[37] V. E. Zakharov, E. A. Kuznetsov, “Kvaziklassicheskaya teoriya trekhmernogo volnovogo kollapsa”, ZhETF, 91:4 (1986), 1310–1324

[38] E. A. Kuznetsov, M. Yu. Kagan, A. V. Turlapov, Expansion of the strongly interacting superfluid Fermi gas: symmetries and self-similar regimes, arXiv: 1903.04245