Why do the microstructures of the main pulse and the interpulse of
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 447-457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Pulsars are magnetized neutron stars. They are not resolved by modern radio telescopes and are studied only by radiation coming from the regions of the magnetic poles. Because of the rotation, this narrow radiation is received as pulses. In a few pulsars whose magnetic axis is almost orthogonal to the rotation axis (the simplest hypothesis), pulses are observed from both poles: the (main) pulse and the interpulse. Such objects primarily include a pulsar in the Crab nebula, observed at many frequencies of the electromagnetic spectrum. In the remarkable work of Hankins and Eilek, a striking difference between the spectra of the main pulse and the interpulse in the Crab nebula in the centimeter wavelength range at microsecond resolution was found (surprising the authors: “In traditional pulsar models ...the MP and IP should be the same in their observable quantities (such as spectrum, time signature, or dispersion). We were—and remain—quite surprised that this turns out not to be the case in the Crab pulsar.” See T. H. Hankins and J. A. Eilek, “Radio emission signatures in the Crab pulsar,” Astrophys. J., 670:1 (2007), 693–701). In particular, a wide range of frequencies was observed in the spectra of the main pulse forming “vertical structures,” while “horizontal structures” with distinguished frequencies were observed in the spectra of the interpulse at the same frequencies. Such a difference, related to different radiation mechanisms (nonrelativistic electron emission in a longitudinal accelerating field for the main pulse and relativistic positron radiation due to the curvature of magnetic field lines for the interpulse), is explained by the change from the nonrelativistic to the relativistic mechanism as the frequency increases. Therefore, the frequencies at which the mechanism changes differ for the main pulse and the interpulse. The frequency of observation in the work of Hankins and Eilek is just between these frequencies with which the difference in the microstructure is connected.
Mots-clés : pulsar
Keywords: Crab nebula pulsar, radiation mechanism, main pulse, interpulse, pulse microstructure.
@article{TMF_2020_202_3_a10,
     author = {V. M. Kontorovich},
     title = {Why do the~microstructures of the~main pulse and the~interpulse of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {447--457},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a10/}
}
TY  - JOUR
AU  - V. M. Kontorovich
TI  - Why do the microstructures of the main pulse and the interpulse of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 447
EP  - 457
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a10/
LA  - ru
ID  - TMF_2020_202_3_a10
ER  - 
%0 Journal Article
%A V. M. Kontorovich
%T Why do the microstructures of the main pulse and the interpulse of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 447-457
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a10/
%G ru
%F TMF_2020_202_3_a10
V. M. Kontorovich. Why do the microstructures of the main pulse and the interpulse of. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 447-457. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a10/

[2] F. G. Smith, Pulsars, Cambridge Univ. Press, Cambridge, 1977

[3] V. M. Lipunov, Astrofizika neitronnykh zvezd, Nauka, M., 1987

[4] V. S. Beskin, MHD Flows in Compact Astrophysical Objects, Springer, Berlin, 2010 | DOI

[5] P. Haensel, A. Yu. Potekhin, D. G. Yakovlev, Neutron Stars 1, Astrophysics and Space Science Library, 326, Springer, New York, 2007 | DOI

[6] A. Yu. Potekhin, “Fizika neitronnykh zvezd”, UFN, 180:12 (2010), 1279–1304 | DOI

[7] D. Moffett, T. Hankins, “Multifrequency radio observations of the Crab pulsar”, Astrophys. J., 468 (1996), 779–783, arXiv: astro-ph/9604163 | DOI

[8] T. H. Hankins, G. Jones, J. A. Eilek, “The Crab pulsar at centimeter wavelengths. I. Ensemble characteristics”, Astrophys. J., 802:2 (2015), 130, 12 pp. | DOI

[9] V. M. Kontorovich, S. V. Trofymenko, “On the mystery of the interpulse shift in the Crab pulsar”, J. Phys. Sci. Appl., 7:4 (2017), 11–28, arXiv: 1707.01584 | DOI

[10] V. M. Kontorovich, “Nelineinoe otrazhenie ot poverkhnosti neitronnoi zvezdy i osobennosti radioizlucheniya pulsara v Krabovidnoi tumannosti”, FNT, 42:8 (2015), 854–862 | DOI

[11] A. N. Timokhin, J. Arons, “Current flow and pair creation at low altitude in rotation powered pulsars' force-free magnetospheres: space-charge limited flow”, Mon. Not. Roy. Astron. Soc., 429:1 (2013), 20–54, arXiv: 1206.5819 | DOI

[12] A. N. Timokhin, A. K. Harding, “On the polar cap cascade pair multiplicity of young pulsars”, J. Astrophys., 810:2 (2015), 144, 26 pp. | DOI

[13] W. M. Fawley, J. Arons, E. T. Scharlemann, “Potential drops above pulsar polar caps: acceleration of nonneutral beams from the stellar surface”, Astrophys. J., 217 (1977), 227–243 | DOI

[14] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Kvantovaya elektrodinamika, Nauka, M., 1989 | MR | Zbl

[15] T. Erber, “High-energy electromagnetic conversion processes in intense magnetic fields”, Rev. Modern Phys., 38:4 (1966), 626–659 | DOI | MR

[16] S. Shibata, J. Miyazaki, F. Takahara, “On the Electric Field Screening by Electron-Positron Pairs in the Pulsar Magnetosphere II”, Mon. Not. R. Astron. Soc., 336 (2002), 233–242 | DOI

[17] V. M. Kontorovich, A. B. Flanchik, “High-frequency cutoff and change of radio emission mechanism in pulsars”, Astrophys. Space Sci., 345:1 (2013), 169–175, arXiv: 1201.0261 | DOI

[18] J. D. Jackson, Classical Electrodynamics, Wiley, New York, 1999 | MR | Zbl

[19] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1967 | MR | Zbl

[20] V. M. Kontorovich, A. B. Flanchik, “O svyazi spektra radioizlucheniya pulsarov s osobennostyami uskoreniya chastits v polyarnom zazore”, ZhETF, 143:1, 92, arXiv: 1210.2858 | DOI | DOI

[21] T. H. Hankins, J. A. Eilek, “Radio emission signatures in the Crab pulsar”, Astrophys. J., 670:1 (2007), 693–701 | DOI

[22] T. H. Hankins, J. S. Kern, J. C. Weatherall, J. A. Eilek, “Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar”, Nature, 422:6928 (2003), 141–143 | DOI

[23] J. Eilek, T. Hankins, “Radio emission physics in the Crab pulsar”, J. Plasma Phys., 82:3 (2016), 635820302, 34 pp. | DOI

[24] V. V. Zheleznyakov, V. V. Zaitsev, E. Ya. Zlotnik, “On the analogy between the zebra patterns in radio emission from the sun and the Crab pulsar”, Astron. Lett., 38:9 (2012), 589–604 | DOI

[25] V. A. Soglasnov, M. V. Popov, N. Bartel, W. Cannon, A. Yu. Novikov, V. I. Kondratiev, V. I. Altunin, “Giant pulses from PSR B1937+21 with widths $\leq 15$ nanoseconds and $T_b \geq 5\times 10^{39}$ K, the highest brightness temperature observed in the Universe”, Astrophys. J., 616:1 (2004), 439–451, arXiv: astro-ph/0408285 | DOI

[26] V. M. Kontorovich, “Gigantskie impulsy pulsarov”, Voprosy atomnoi nauki i tekhniki, 4:68 (2010), 143–148

[27] V. M. Kontorovich, “On high brightness temperature of pulsar giant pulses”, J. Phys. Sci. Appl., 5 (2015), 48–60 | DOI

[28] V. M. Kontorovich, “Kvantovanie elektromagnitnogo smercha i proiskhozhdenie polos v spektre gigantskikh impulsov pulsara v Krabe”, Pisma v Astr. zhurn., 40:12 (2014), 850–856 | DOI | DOI

[29] R. Devidson, Teoriya zaryazhennoi plazmy, Mir, M., 1978

[30] V. M. Kontorovich, “Elektromagnitnyi smerch v vakuumnom zazore pulsara”, ZhETF, 137:6 (2010), 1107–1114 | DOI