Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 339-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of the equivalence of scalar second-order ordinary differential equations under invertible point transformations. To solve this problem in the case of Painlevé equations, we use previously constructed invariants of a family of equations whose right-hand sides have a cubic nonlinearity in the first derivative. We obtain the conditions for point equivalence to the fifth Painlevé equation if two or three of its parameters are equal to zero.
Mots-clés : Painlevé equation, equivalence, invariant.
@article{TMF_2020_202_3_a1,
     author = {Yu. Yu. Bagderina},
     title = {Point equivalence of second-order ordinary differential equations to the~fifth {Painlev\'e} equation with one and two nonzero parameters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--352},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/}
}
TY  - JOUR
AU  - Yu. Yu. Bagderina
TI  - Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 339
EP  - 352
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/
LA  - ru
ID  - TMF_2020_202_3_a1
ER  - 
%0 Journal Article
%A Yu. Yu. Bagderina
%T Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 339-352
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/
%G ru
%F TMF_2020_202_3_a1
Yu. Yu. Bagderina. Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 339-352. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/

[1] P. Painlevé, “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France, 28 (1900), 201–261 | DOI | MR

[2] P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25:1 (1902), 1–85 | DOI | MR

[3] B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes”, Acta Math., 33:1 (1910), 1–55 | DOI | MR

[4] Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ordinary differential equations”, J. Phys. A: Math. Theor., 46:29 (2013), 295201, 36 pp. | DOI | MR

[5] N. Kamran, K. G. Lamb, W. F. Shadwick, “The local equivalence problem for $d^2y/dx^2=F(x,y,dy/dx)$ and the Painlevé transcendents”, J. Differ. Geom., 22:2 (1985), 139–150 | DOI | MR | Zbl

[6] A. V. Bocharov, V. V. Sokolov, S. I. Svinolupov, On some equivalence problems for differential equations, Preprint ESI 54, International Erwin Schrödinger Institute for Mathematical Physics, Vienna, 1993

[7] J. Hietarinta, V. Dryuma, “Is my ODE a Painlevé equation in disguise?”, J. Nonlinear Math. Phys., 9:1 (2002), 67–74 | DOI | MR

[8] R. Dridi, “On the geometry of the first and second Painlevé equations”, J. Phys. A: Math. Theor., 42:12 (2009), 125201, 9 pp. | DOI | MR

[9] V. V. Kartak, “Yavnoe reshenie problemy ekvivalentnosti dlya nekotorykh uravnenii Penleve”, Ufimsk. matem. zhurn., 1:3 (2009), 46–56 | Zbl

[10] V. V. Kartak, “Reshenie problemy ekvivalentnosti dlya uravneniya Penleve IV”, TMF, 173:2 (2012), 245–267 | DOI | DOI | MR

[11] V. V. Kartak, “‘Painlevé 34’ equation: equivalence test”, Commun. Nonlinear Sci. Numer. Simul., 19:9 (2014), 2993–3000, arXiv: 1302.2419 | DOI | MR

[12] Yu. Yu. Bagderina, “Ekvivalentnost ODU vtorogo poryadka uravneniyam tipa pervogo uravneniya Penleve”, Ufimsk. matem. zhurnal, 7:1 (2015), 19–30 | DOI | MR

[13] Yu. Yu. Bagderina, “Ekvivalentnost obyknovennykh differentsialnykh uravnenii vtorogo poryadka uravneniyam Penleve”, TMF, 182:2 (2015), 256–276 | DOI | DOI | MR

[14] Yu. Yu. Bagderina, N. N. Tarkhanov, “Solution of the equivalence problem for the third Painlevé equation”, J. Math. Phys., 56:1 (2015), 013507, 15 pp. | DOI | MR

[15] M. V. Babich, L. A. Bordag, “Projective differential geometrical structure of the Painlevé equations”, J. Differ. Equ., 157:2 (1999), 452–485 | DOI | MR

[16] Yu. Yu. Bagderina, “Neobkhodimye usloviya tochechnoi ekvivalentnosti ODU vtorogo poryadka shestomu uravneniyu Penleve”, Zap. nauchn. sem. POMI, 473 (2018), 17–33 | DOI

[17] Yu. Yu. Bagderina, “Necessary conditions of point equivalence of second-order ODEs to the fifth Painlevé equation”, J. Phys.: Conf. Ser., 1205:1 (2019), 012004, 6 pp. | DOI

[18] V. I. Gromak, “O privodimosti uravnenii Penleve”, Differents. uravneniya, 20:10 (1984), 1674–1683 | MR

[19] Yu. Yu. Bagderina, “Integriruemye uravneniya glavnogo rezonansa”, Matem. zametki, 80:3 (2006), 465–468 | DOI | DOI | MR | Zbl

[20] Yu. Yu. Bagderina, “Sopostavlenie rezultatov po probleme ekvivalentnosti skalyarnykh ODU vtorogo poryadka proektivnogo tipa”, Vestn. NIYaU “MIFI”, 8:1 (2019), 40–48 | DOI

[21] R. Liouville, “Sur les invariants de certaines équations différentielles et sur leurs applications”, J. École Polytechnique, 59 (1889), 7–76

[22] L. A. Bordag, A. V. Kitaev, Ob algebraicheskikh i ratsionalnykh resheniyakh pyatogo uravneniya Penleve, Preprint P5-86-364, OIYaI, Dubna, 1986

[23] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, GITTL, M., 1955 | MR

[24] M. Jimbo, “An inverse scattering problem and the fifth Painlevé transcendent”, Prog. Theor. Phys., 61:1 (1979), 359–360 | DOI

[25] H. Casini, C. D. Fosco, M. Huerta, “Entanglement and alpha entropies for a massive Dirac field in two dimensions”, J. Stat. Mech., 2005 (2005), P07007, 16 pp., arXiv: cond-mat/0505563 | DOI

[26] W. Van Assche, Orthogonal Polynomials and Painlevé Equations, Australian Mathematical Society Lecture Series, 27, Cambridge Univ. Press, Cambridge, 2018 | MR

[27] P. A. Clarkson, “Open problems for Painlevé equations”, SIGMA, 15 (2019), 006, 20 pp., arXiv: 1901.10122 | DOI | MR

[28] S. Salihoglu, “The two-dimensional $O(N)$ nonlinear $\sigma$-model and the fifth Painlevé transcendent”, Phys. Lett. B, 89:3–4 (1980), 367–368 | DOI | MR