Point equivalence of second-order ordinary differential equations to the~fifth Painlev\'e equation with one and two nonzero parameters
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 339-352

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the equivalence of scalar second-order ordinary differential equations under invertible point transformations. To solve this problem in the case of Painlevé equations, we use previously constructed invariants of a family of equations whose right-hand sides have a cubic nonlinearity in the first derivative. We obtain the conditions for point equivalence to the fifth Painlevé equation if two or three of its parameters are equal to zero.
Keywords: Painlevé equation
Mots-clés : equivalence, invariant.
@article{TMF_2020_202_3_a1,
     author = {Yu. Yu. Bagderina},
     title = {Point equivalence of second-order ordinary differential equations to the~fifth {Painlev\'e} equation with one and two nonzero parameters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--352},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/}
}
TY  - JOUR
AU  - Yu. Yu. Bagderina
TI  - Point equivalence of second-order ordinary differential equations to the~fifth Painlev\'e equation with one and two nonzero parameters
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 339
EP  - 352
VL  - 202
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/
LA  - ru
ID  - TMF_2020_202_3_a1
ER  - 
%0 Journal Article
%A Yu. Yu. Bagderina
%T Point equivalence of second-order ordinary differential equations to the~fifth Painlev\'e equation with one and two nonzero parameters
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 339-352
%V 202
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/
%G ru
%F TMF_2020_202_3_a1
Yu. Yu. Bagderina. Point equivalence of second-order ordinary differential equations to the~fifth Painlev\'e equation with one and two nonzero parameters. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 339-352. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/