@article{TMF_2020_202_3_a1,
author = {Yu. Yu. Bagderina},
title = {Point equivalence of second-order ordinary differential equations to the~fifth {Painlev\'e} equation with one and two nonzero parameters},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {339--352},
year = {2020},
volume = {202},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/}
}
TY - JOUR AU - Yu. Yu. Bagderina TI - Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 339 EP - 352 VL - 202 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/ LA - ru ID - TMF_2020_202_3_a1 ER -
%0 Journal Article %A Yu. Yu. Bagderina %T Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 339-352 %V 202 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/ %G ru %F TMF_2020_202_3_a1
Yu. Yu. Bagderina. Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 339-352. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/
[1] P. Painlevé, “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France, 28 (1900), 201–261 | DOI | MR
[2] P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25:1 (1902), 1–85 | DOI | MR
[3] B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes”, Acta Math., 33:1 (1910), 1–55 | DOI | MR
[4] Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ordinary differential equations”, J. Phys. A: Math. Theor., 46:29 (2013), 295201, 36 pp. | DOI | MR
[5] N. Kamran, K. G. Lamb, W. F. Shadwick, “The local equivalence problem for $d^2y/dx^2=F(x,y,dy/dx)$ and the Painlevé transcendents”, J. Differ. Geom., 22:2 (1985), 139–150 | DOI | MR | Zbl
[6] A. V. Bocharov, V. V. Sokolov, S. I. Svinolupov, On some equivalence problems for differential equations, Preprint ESI 54, International Erwin Schrödinger Institute for Mathematical Physics, Vienna, 1993
[7] J. Hietarinta, V. Dryuma, “Is my ODE a Painlevé equation in disguise?”, J. Nonlinear Math. Phys., 9:1 (2002), 67–74 | DOI | MR
[8] R. Dridi, “On the geometry of the first and second Painlevé equations”, J. Phys. A: Math. Theor., 42:12 (2009), 125201, 9 pp. | DOI | MR
[9] V. V. Kartak, “Yavnoe reshenie problemy ekvivalentnosti dlya nekotorykh uravnenii Penleve”, Ufimsk. matem. zhurn., 1:3 (2009), 46–56 | Zbl
[10] V. V. Kartak, “Reshenie problemy ekvivalentnosti dlya uravneniya Penleve IV”, TMF, 173:2 (2012), 245–267 | DOI | DOI | MR
[11] V. V. Kartak, “‘Painlevé 34’ equation: equivalence test”, Commun. Nonlinear Sci. Numer. Simul., 19:9 (2014), 2993–3000, arXiv: 1302.2419 | DOI | MR
[12] Yu. Yu. Bagderina, “Ekvivalentnost ODU vtorogo poryadka uravneniyam tipa pervogo uravneniya Penleve”, Ufimsk. matem. zhurnal, 7:1 (2015), 19–30 | DOI | MR
[13] Yu. Yu. Bagderina, “Ekvivalentnost obyknovennykh differentsialnykh uravnenii vtorogo poryadka uravneniyam Penleve”, TMF, 182:2 (2015), 256–276 | DOI | DOI | MR
[14] Yu. Yu. Bagderina, N. N. Tarkhanov, “Solution of the equivalence problem for the third Painlevé equation”, J. Math. Phys., 56:1 (2015), 013507, 15 pp. | DOI | MR
[15] M. V. Babich, L. A. Bordag, “Projective differential geometrical structure of the Painlevé equations”, J. Differ. Equ., 157:2 (1999), 452–485 | DOI | MR
[16] Yu. Yu. Bagderina, “Neobkhodimye usloviya tochechnoi ekvivalentnosti ODU vtorogo poryadka shestomu uravneniyu Penleve”, Zap. nauchn. sem. POMI, 473 (2018), 17–33 | DOI
[17] Yu. Yu. Bagderina, “Necessary conditions of point equivalence of second-order ODEs to the fifth Painlevé equation”, J. Phys.: Conf. Ser., 1205:1 (2019), 012004, 6 pp. | DOI
[18] V. I. Gromak, “O privodimosti uravnenii Penleve”, Differents. uravneniya, 20:10 (1984), 1674–1683 | MR
[19] Yu. Yu. Bagderina, “Integriruemye uravneniya glavnogo rezonansa”, Matem. zametki, 80:3 (2006), 465–468 | DOI | DOI | MR | Zbl
[20] Yu. Yu. Bagderina, “Sopostavlenie rezultatov po probleme ekvivalentnosti skalyarnykh ODU vtorogo poryadka proektivnogo tipa”, Vestn. NIYaU “MIFI”, 8:1 (2019), 40–48 | DOI
[21] R. Liouville, “Sur les invariants de certaines équations différentielles et sur leurs applications”, J. École Polytechnique, 59 (1889), 7–76
[22] L. A. Bordag, A. V. Kitaev, Ob algebraicheskikh i ratsionalnykh resheniyakh pyatogo uravneniya Penleve, Preprint P5-86-364, OIYaI, Dubna, 1986
[23] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, GITTL, M., 1955 | MR
[24] M. Jimbo, “An inverse scattering problem and the fifth Painlevé transcendent”, Prog. Theor. Phys., 61:1 (1979), 359–360 | DOI
[25] H. Casini, C. D. Fosco, M. Huerta, “Entanglement and alpha entropies for a massive Dirac field in two dimensions”, J. Stat. Mech., 2005 (2005), P07007, 16 pp., arXiv: cond-mat/0505563 | DOI
[26] W. Van Assche, Orthogonal Polynomials and Painlevé Equations, Australian Mathematical Society Lecture Series, 27, Cambridge Univ. Press, Cambridge, 2018 | MR
[27] P. A. Clarkson, “Open problems for Painlevé equations”, SIGMA, 15 (2019), 006, 20 pp., arXiv: 1901.10122 | DOI | MR
[28] S. Salihoglu, “The two-dimensional $O(N)$ nonlinear $\sigma$-model and the fifth Painlevé transcendent”, Phys. Lett. B, 89:3–4 (1980), 367–368 | DOI | MR