Point equivalence of second-order ordinary differential equations to the~fifth Painlev\'e equation with one and two nonzero parameters
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 339-352
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the problem of the equivalence of scalar second-order ordinary differential equations under invertible point transformations. To solve this problem in the case of Painlevé equations, we use previously constructed invariants of a family of equations whose right-hand sides have a cubic nonlinearity in the first derivative. We obtain the conditions for point equivalence to the fifth Painlevé equation if two or three of its parameters are equal to zero.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Painlevé equation
Mots-clés : equivalence, invariant.
                    
                  
                
                
                Mots-clés : equivalence, invariant.
@article{TMF_2020_202_3_a1,
     author = {Yu. Yu. Bagderina},
     title = {Point equivalence of second-order ordinary differential equations to the~fifth {Painlev\'e} equation with one and two nonzero parameters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--352},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/}
}
                      
                      
                    TY - JOUR AU - Yu. Yu. Bagderina TI - Point equivalence of second-order ordinary differential equations to the~fifth Painlev\'e equation with one and two nonzero parameters JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 339 EP - 352 VL - 202 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/ LA - ru ID - TMF_2020_202_3_a1 ER -
%0 Journal Article %A Yu. Yu. Bagderina %T Point equivalence of second-order ordinary differential equations to the~fifth Painlev\'e equation with one and two nonzero parameters %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 339-352 %V 202 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/ %G ru %F TMF_2020_202_3_a1
Yu. Yu. Bagderina. Point equivalence of second-order ordinary differential equations to the~fifth Painlev\'e equation with one and two nonzero parameters. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 339-352. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a1/
