Mots-clés : conformal transformation
@article{TMF_2020_202_3_a0,
author = {V. E. Zakharov},
title = {Integration of a~deep fluid equation with a~free surface},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {327--338},
year = {2020},
volume = {202},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a0/}
}
V. E. Zakharov. Integration of a deep fluid equation with a free surface. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 327-338. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a0/
[1] V. E. Zakharov, A. I. Dyachenko, “Are equations of deep water with a free surface integrable?”, Russian-French Workshop “Mathematical hydrodynamics”. Abstract (August 22–27, 2016, Novosibirsk, Russia), Novosibirsk State University, Novosibirsk, 2016, 55
[2] E. A. Karabut, E. N. Zhuravleva, “Reduction of free-boundary problem to the system of differential equation”, IX International Scientific Conference “Solitons, Collapses and Turbulence: Achievements, Developments and Perspectives” (SCT-19) in honor of Vladimir Zakharov's 80th birthday. Abstracts (Yaroslavl, August 5–9, 2019), Demidov Yaroslavl State University, Yaroslavl, 2019, 67
[3] V. E. Zakharov, C. V. Manakov, C. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi rasseyaniya, Nauka, M., 1980 | MR
[4] P. Nabelek, V. E. Zakharov, “Dressing method in application to the Kaup–Broer system”, in preparation
[5] A. I. Dyachenko, V. E. Zakharov, “Is free-surface hydrodynamics an integrable system?”, Phys. Lett. A, 190:2 (1994), 144–148 | DOI | MR
[6] A. I. Dyachenko, “New integrals of motions for water waves”, IX International Scientific Conference “Solitons, Collapses and Turbulence: Achievements, Developments and Perspectives” (SCT-19) in honor of Vladimir Zakharov's 80th birthday. Abstracts (Yaroslavl, August 5–9, 2019), Demidov Yaroslavl State University, Yaroslavl, 2019, 39
[7] V. E. Zakharov, A. I. Dyachenko, Free-surface hydrodynamics in the conformal variables, arXiv: 1206.2046
[8] A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov, V. E. Zakharov, “Dynamics of poles in two-dimensional hydrodynamics with free surface: new constant of motion”, J. Fluid Mech., 871 (2019), 891–925, arXiv: 1809.09584 | DOI | MR
[9] L. N. Sretenskii, Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977
[10] A. I. Dyachenko, P. M. Lushnikov, V. E. Zakharov, “Non-canonical Hamiltonian structure and Poisson brackets for two-dimensional hydrodynamics with free surface”, J. Fluid Mech., 869 (2019), 526–552 | DOI | MR
[11] E. A. Karabut, E. N. Zhuravleva, “Unsteady flows with a zero acceleration of the free boundary”, J. Fluid Mech., 754 (2014), 308–331 | DOI | MR
[12] E. A. Karabut, E. N. Zhuravleva, “Nestatsionarnye techeniya s nulevym uskoreniem na svobodnoi granitse”, Dokl. RAN, 458:6 (2014), 656–659 | DOI | DOI
[13] E. A. Karabut, E. N. Zhuravleva, “Razmnozhenie reshenii v ploskoi zadache o dvizhenii zhidkosti so svobodnoi granitsei”, Dokl. RAN, 469:3 (2016), 295–298 | DOI
[14] A. I. Dyachenko, E. A. Kuznetsov, M. D. Spector, V. E. Zakharov, “Analytical description of the free surface dynamics of ideal fluid (canonical formalism and conformal mapping)”, Phys. Lett. A, 221:1–2 (1999), 73–79 | DOI
[15] N. M. Zubarev, E. A. Karabut, “Tochnye lokalnye resheniya dlya formirovaniya osobennostei na poverkhnosti idealnoi zhidkosti”, Pisma v ZhETF, 107:7 (2018), 434–439 | DOI | DOI