Integration of a deep fluid equation with a free surface
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 327-338 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the Euler equations describing the unsteady potential flow of a two-dimensional deep fluid with a free surface in the absence of gravity and surface tension can be integrated exactly under a special choice of boundary conditions at infinity. We assume that the fluid surface at infinity is unperturbed, while the velocity increase is proportional to distance and inversely proportional to time. This means that the fluid is compressed according to a self-similar law. We consider perturbations of a self-similarly compressible fluid and show that their evolution can be accurately described analytically after a conformal map of the fluid surface to the lower half-plane and the introduction of two arbitrary functions analytic in this half-plane. If one of these functions is equal to zero, then the solution can be written explicitly. In the general case, the solution appears to be a rapidly converging series whose terms can be calculated using recurrence relations.
Keywords: integrability, drop, bubble, singularity.
Mots-clés : conformal transformation
@article{TMF_2020_202_3_a0,
     author = {V. E. Zakharov},
     title = {Integration of a~deep fluid equation with a~free surface},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {327--338},
     year = {2020},
     volume = {202},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a0/}
}
TY  - JOUR
AU  - V. E. Zakharov
TI  - Integration of a deep fluid equation with a free surface
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 327
EP  - 338
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a0/
LA  - ru
ID  - TMF_2020_202_3_a0
ER  - 
%0 Journal Article
%A V. E. Zakharov
%T Integration of a deep fluid equation with a free surface
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 327-338
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a0/
%G ru
%F TMF_2020_202_3_a0
V. E. Zakharov. Integration of a deep fluid equation with a free surface. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 3, pp. 327-338. http://geodesic.mathdoc.fr/item/TMF_2020_202_3_a0/

[1] V. E. Zakharov, A. I. Dyachenko, “Are equations of deep water with a free surface integrable?”, Russian-French Workshop “Mathematical hydrodynamics”. Abstract (August 22–27, 2016, Novosibirsk, Russia), Novosibirsk State University, Novosibirsk, 2016, 55

[2] E. A. Karabut, E. N. Zhuravleva, “Reduction of free-boundary problem to the system of differential equation”, IX International Scientific Conference “Solitons, Collapses and Turbulence: Achievements, Developments and Perspectives” (SCT-19) in honor of Vladimir Zakharov's 80th birthday. Abstracts (Yaroslavl, August 5–9, 2019), Demidov Yaroslavl State University, Yaroslavl, 2019, 67

[3] V. E. Zakharov, C. V. Manakov, C. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi rasseyaniya, Nauka, M., 1980 | MR

[4] P. Nabelek, V. E. Zakharov, “Dressing method in application to the Kaup–Broer system”, in preparation

[5] A. I. Dyachenko, V. E. Zakharov, “Is free-surface hydrodynamics an integrable system?”, Phys. Lett. A, 190:2 (1994), 144–148 | DOI | MR

[6] A. I. Dyachenko, “New integrals of motions for water waves”, IX International Scientific Conference “Solitons, Collapses and Turbulence: Achievements, Developments and Perspectives” (SCT-19) in honor of Vladimir Zakharov's 80th birthday. Abstracts (Yaroslavl, August 5–9, 2019), Demidov Yaroslavl State University, Yaroslavl, 2019, 39

[7] V. E. Zakharov, A. I. Dyachenko, Free-surface hydrodynamics in the conformal variables, arXiv: 1206.2046

[8] A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov, V. E. Zakharov, “Dynamics of poles in two-dimensional hydrodynamics with free surface: new constant of motion”, J. Fluid Mech., 871 (2019), 891–925, arXiv: 1809.09584 | DOI | MR

[9] L. N. Sretenskii, Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977

[10] A. I. Dyachenko, P. M. Lushnikov, V. E. Zakharov, “Non-canonical Hamiltonian structure and Poisson brackets for two-dimensional hydrodynamics with free surface”, J. Fluid Mech., 869 (2019), 526–552 | DOI | MR

[11] E. A. Karabut, E. N. Zhuravleva, “Unsteady flows with a zero acceleration of the free boundary”, J. Fluid Mech., 754 (2014), 308–331 | DOI | MR

[12] E. A. Karabut, E. N. Zhuravleva, “Nestatsionarnye techeniya s nulevym uskoreniem na svobodnoi granitse”, Dokl. RAN, 458:6 (2014), 656–659 | DOI | DOI

[13] E. A. Karabut, E. N. Zhuravleva, “Razmnozhenie reshenii v ploskoi zadache o dvizhenii zhidkosti so svobodnoi granitsei”, Dokl. RAN, 469:3 (2016), 295–298 | DOI

[14] A. I. Dyachenko, E. A. Kuznetsov, M. D. Spector, V. E. Zakharov, “Analytical description of the free surface dynamics of ideal fluid (canonical formalism and conformal mapping)”, Phys. Lett. A, 221:1–2 (1999), 73–79 | DOI

[15] N. M. Zubarev, E. A. Karabut, “Tochnye lokalnye resheniya dlya formirovaniya osobennostei na poverkhnosti idealnoi zhidkosti”, Pisma v ZhETF, 107:7 (2018), 434–439 | DOI | DOI