Ising model with nonmagnetic dilution on recursive lattices
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 304-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a method for composing self-consistent equations, we construct a class of approximate solutions of the Ising problem that are a generalization of the Bethe approximation. We show that some of the approximations in this class can be interpreted as exact solutions of the Ising model on recursive lattices. For these recursive lattices, we find exact values of the thresholds of percolation through sites and couplings and show that for the Ising model of a diluted magnet, our method leads to exact values for these thresholds.
Keywords: Ising model, crystal lattice, magnet with nonmagnetic dilution, recursive lattice.
@article{TMF_2020_202_2_a8,
     author = {S. V. Semkin and V. P. Smagin and E. G. Gusev},
     title = {Ising model with nonmagnetic dilution on recursive lattices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {304--311},
     year = {2020},
     volume = {202},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a8/}
}
TY  - JOUR
AU  - S. V. Semkin
AU  - V. P. Smagin
AU  - E. G. Gusev
TI  - Ising model with nonmagnetic dilution on recursive lattices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 304
EP  - 311
VL  - 202
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a8/
LA  - ru
ID  - TMF_2020_202_2_a8
ER  - 
%0 Journal Article
%A S. V. Semkin
%A V. P. Smagin
%A E. G. Gusev
%T Ising model with nonmagnetic dilution on recursive lattices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 304-311
%V 202
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a8/
%G ru
%F TMF_2020_202_2_a8
S. V. Semkin; V. P. Smagin; E. G. Gusev. Ising model with nonmagnetic dilution on recursive lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 304-311. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a8/

[1] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl

[2] S. V. Semkin, V. P. Smagin, E. G. Gusev, “Model Pottsa na reshetke Bete s nemagnitnymi primesyami vo vneshnem pole”, TMF, 197:2 (2018), 290–295 | DOI | DOI | MR

[3] S. V. Semkin, V. P. Smagin, E. G. Gusev, “Magnitnaya vospriimchivost razbavlennogo izingovskogo magnetika”, TMF, 201:2 (2019), 278–288 | DOI

[4] S. V. Semkin, V. P. Smagin, “Klasternyi sposob postroeniya priblizheniya Bete dlya modeli Izinga razbavlennogo magnetika”, Izv. vuzov. Fizika, 60:10 (2017), 140–145 | DOI | DOI

[5] V. P. Smagin, S. V. Semkin, “Metod tsiklicheskikh klasterov v modeli Izinga razbavlennogo magnetika”, Vestn. VGUES, 10:1 (2018), 116–123 | DOI

[6] A. A. Zykov, Osnovy teorii grafov, Vuzovskaya kniga, M., 2004 | MR | Zbl

[7] L. N. Ananikyan, “Magnitnye svoistva 3Ne na rekursivnykh reshetkakh”, Izv. NAN Armenii. Fizika, 42:1 (2007), 17–23

[8] N. S. Ananikyan, L. N. Ananikyan, L. A. Chakhmakhchyan, “Tsiklicheskoe okno perioda tri v antiferromagnitnykh modelyakh Pottsa i Izinga na rekurrentnykh reshetkakh”, Pisma v ZhETF, 94:1 (2011), 40–44 | DOI

[9] S. V. Semkin, V. P. Smagin, “Model Pottsa na reshetke Bete s nemagnitnymi primesyami”, ZhETF, 148:4 (2015), 729–733 | DOI | DOI

[10] S. V. Semkin, V. P. Smagin, “Priblizhenie Bete v modeli Izinga s podvizhnymi primesyami”, FTT, 57:5 (2015), 926–931 | DOI

[11] Dzh. Zaiman, Modeli besporyadka. Teoreticheskaya fizika odnorodno neuporyadochennykh sistem, Mir, M., 1982 | MR