Dynamics of domain walls in a cylindrical amorphous ferromagnetic microwire with magnetic inhomogeneities
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 290-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the dynamics of a domain wall ($DW$) in the magnetic core of thin amorphous glass-coated bistable microwires with a circular cross section containing longitudinal inhomogeneities. We use a systematic analytic approach to the problem of finding particular solutions of the continuous Heisenberg model for which we use Landau–Lifshitz–Gilbert equations. We establish a relation between the structure of a material including defects and the DW mobility that explains some experimental data. For a given defect distribution in the longitudinal direction, we study the influence of defects on DW propagation in bistable glass-coated microwires. We obtain new key formulas for the DW velocity and acceleration based on taking the average defect distribution into account.
Keywords: Landau–Lifshitz–Gilbert equation, amorphous microwire, magnetic domain walls, magnetic inhomogeneity.
Mots-clés : anisotropy coefficient
@article{TMF_2020_202_2_a7,
     author = {S. B. Leble and V. V. Rodionova},
     title = {Dynamics of domain walls in a~cylindrical amorphous ferromagnetic microwire with magnetic inhomogeneities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {290--303},
     year = {2020},
     volume = {202},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a7/}
}
TY  - JOUR
AU  - S. B. Leble
AU  - V. V. Rodionova
TI  - Dynamics of domain walls in a cylindrical amorphous ferromagnetic microwire with magnetic inhomogeneities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 290
EP  - 303
VL  - 202
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a7/
LA  - ru
ID  - TMF_2020_202_2_a7
ER  - 
%0 Journal Article
%A S. B. Leble
%A V. V. Rodionova
%T Dynamics of domain walls in a cylindrical amorphous ferromagnetic microwire with magnetic inhomogeneities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 290-303
%V 202
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a7/
%G ru
%F TMF_2020_202_2_a7
S. B. Leble; V. V. Rodionova. Dynamics of domain walls in a cylindrical amorphous ferromagnetic microwire with magnetic inhomogeneities. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 290-303. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a7/

[1] A. Zhukov, M. Vázquez, J. Velázquez, A. Hernando, V. Larin, “Magnetic properties of Fe-based glass-coated microwires”, J. Magn. Magn. Mater., 170:3 (1997), 323–330 | DOI

[2] R. Varga, A. Zhukov, J. M. Blanco, M. Ipatov, V. Zhukova, J. Gonzalez, P. Vojtaník, “Fast magnetic domain wall in magnetic microwires”, Phys. Rev. B, 74:21 (2006), 212405, 4 pp. | DOI

[3] H. Chiriac, T. A. Óvári, Gh. Pop, “Internal stress distribution in glass-covered amorphous magnetic wires”, Phys. Rev. B., 52:14 (1995), 10104–10113 | DOI

[4] I. Baraban, S. Leble, L. V. Panina, V. Rodionova, “Control of magneto-static and -dynamic properties by stress tuning in Fe–Si–B amorphous microwires with fixed dimensions”, J. Magn. Magn. Mater., 477 (2019), 415–419 | DOI

[5] V. Rodionova, M. Ilyn, A. Granovsky, N. Perov, V. Zhukova, G. Abrosimova, A. Aronin, A. Kiselev, A. Zhukov, “Internal stress induced texture in Ni–Mn–Ga based glass-covered microwires”, Appl. Phys., 114:12 (2013), 123914, 5 pp. | DOI

[6] V. Rodionova, V. Zhukova, M. Ilyn, M. Ipatov, N. Perov, A. Zhukov, “The defects influence on domain wall propagation in bistable glass-coated microwires”, Phys. B, 407:9 (2012), 1446–1449 | DOI

[7] A. Zhukov, M. Ipatov, J. M. Blanco, A. Chizhik, A. Talaat, V. Zhukova, “Fast magnetization switching in amorphous microwires”, Acta Phys. Pol. A, 126:1 (2014), 7–11 | DOI

[8] M. Ipatov, N. A. Usov, A. Zhukov, J. Gonzalez, “Local nucleation fields of Fe-rich microwires and their dependence on applied stresses”, Phys. B, 403:2–3 (2008), 379–381 | DOI

[9] V. Zhukova, J. M. Blanco, V. Rodionova, M. Ipatov, A. Zhukov, “Fast magnetization switching in Fe-rich amorphous microwires: Effect of magnetoelastic anisotropy and role of defects”, J. Alloys Comp., 586, suppl. 1 (2014), S287–S290 | DOI

[10] A. Janutka, P. Gawroǹski, “Structure of magnetic domain wall in cylindrical microwire”, IEEE Trans. Magn., 51:5 (2015), 1500106, 6 pp. | DOI

[11] M. M. Bogdan, A. S. Kovalev, “Tochnye mnogosolitonnye resheniya odnomernykh uravnenii Landau–Lifshitsa dlya neizotropnogo ferromagnetika”, Pisma v ZhETF, 31:8 (1980), 453–457

[12] M. Vereshchagin, “Structure of domain wall in cylindrical amorphous microwire”, Phys. B, 549 (2018), 91–93 | DOI

[13] S. Davis, G. Gutiérrez, “Dynamic properties of a classical anisotropic Heisenberg chain under external magnetic field”, Phys. B, 355:1–4 (2005), 1–8 | DOI

[14] W. Heisenberg, “Zur Theorie des Ferromagnetismus”, Z. Phys., 49:9–10 (1928), 619–636 ; “Zur Quantentheorie des Ferromagnetismus”, Probleme der modernen Physik Arnold Sommeifeld zum 60. Geburtstage gewidmet von seinen Schülern, eds. P. Debye, S. Hirzel, Leipzig, 1928, 114–122; “Zur Theorie der Magnetostriktion und der Magnetisierungskurve”, Z. Phys., 69:5–6 (1931), 287–297 | DOI | DOI

[15] V. A. Fok, “Priblizhennyi sposob resheniya kvantovoi zadachi mnogikh tel”, UFN, 93:2 (1967), 342–361 | DOI | DOI | Zbl

[16] S. Leble, “Heisenberg chain equations in terms of Fockian covariance with electric field account and multiferroics in nanoscale”, Nanosystems: Phys., Chem., Math., 10:1 (2019), 18–30 | DOI

[17] W. Heisenberg, “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen”, Z. Phys., 33:1 (1925), 879–893 | DOI

[18] M. Lakshmanan, “The fascinating world of the Landau–Lifshitz–Gilbert equation: an overview”, Phil. Trans. Roy. Soc. London Ser. A, 369:1939 (2011), 1280–1300 | DOI | MR

[19] L. D. Landau, E. M. Lifshits, “K teorii dispersii magnitnoi pronitsaemosti ferromagnitnykh tel”: L. D. Landau, Sobranie trudov, v. 1, ed. E. M. Lifshits, Nauka, M., 1969, 128–143

[20] T. L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials”, IEEE Trans. Magn., 40:6 (2004), 3443–3449 | DOI

[21] M. Lakshmanan, K. Nakamura, “Landau–Lifshitz equation of ferromagnetism: exact treatment of the Gilbert damping”, Phys. Rev. Lett., 53:26 (1984), 2497–2499 | DOI

[22] A. S. Antonov, V. T. Borisov, O. V. Borisov, A. F. Prokoshin, N. A. Usov, “Residual quenching stresses in glass-coated amorphous ferromagnetic microwires”, J. Phys. D, 33:10 (2000), 1161–1168 | DOI

[23] K. D. Sattler (ed.), Handbook of Nanophysics, v. 1, Principles and Methods, CRC Press, Boca Raton, FL, 2010

[24] L. V. Panina, M. Ipatov, V. Zhukovf, A. Zhukov, “Domain wall propagation in Fe-rich amorphous microwires”, Phys. B, 407 (2012), 1442–1445 | DOI

[25] S. Atalay, P. T. Squire, “Magnetomechanical damping in FeSiB amorphous wires”, J. Appl. Phys., 73:2 (1993), 871–875 | DOI

[26] N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, R. Wiesendange, “Field-dependent size and shape of single magnetic Skyrmions”, Phys. Rev. Lett., 114:17 (2015), 177203, 2015, 5 pp. | DOI

[27] B. Dupé, M. Hoffmann, C. Paillard, S. Heinze, “Tailoring magnetic skyrmions in ultra-thin transition metal films”, Nature Commun., 5 (2014), 4030, 12 pp. | DOI

[28] E. Simon, K. Palotás, L. Rózsa, L. Udvardi, L. Szunyogh, “Formation of magnetic skyrmions with tunable properties in PdFe bilayer deposited on Ir(111)”, Phys. Rev. B, 90:9 (2014), 094410, 7 pp., arXiv: 1407.7718 | DOI