Hannay angles and Grassmannian action-angle quantum states
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 278-289

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how to derive the Hannay angles of Grassmannian classical mechanics from the evolution of Grassmannian action–angle quantum states. Just as in the commutative case, this evolution defines a geometric transport, which can also be obtained from a quantum canonical transformation or a variational principle. As examples, we explicitly construct the quantum states for the classical counterparts of a first- and second-quantized $N$-level system. In the latter case, these states reduce to standard fermionic coherent states and the classical Hannay angles coincide with the quantum Berry phases.
Keywords: Berry phase, Hannay angle, action–angle fermionic coherent state.
@article{TMF_2020_202_2_a6,
     author = {H. Lakehal and M. Maamache},
     title = {Hannay angles and {Grassmannian} action-angle quantum states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {278--289},
     publisher = {mathdoc},
     volume = {202},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a6/}
}
TY  - JOUR
AU  - H. Lakehal
AU  - M. Maamache
TI  - Hannay angles and Grassmannian action-angle quantum states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 278
EP  - 289
VL  - 202
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a6/
LA  - ru
ID  - TMF_2020_202_2_a6
ER  - 
%0 Journal Article
%A H. Lakehal
%A M. Maamache
%T Hannay angles and Grassmannian action-angle quantum states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 278-289
%V 202
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a6/
%G ru
%F TMF_2020_202_2_a6
H. Lakehal; M. Maamache. Hannay angles and Grassmannian action-angle quantum states. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 278-289. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a6/