Hannay angles and Grassmannian action-angle quantum states
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 278-289 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show how to derive the Hannay angles of Grassmannian classical mechanics from the evolution of Grassmannian action–angle quantum states. Just as in the commutative case, this evolution defines a geometric transport, which can also be obtained from a quantum canonical transformation or a variational principle. As examples, we explicitly construct the quantum states for the classical counterparts of a first- and second-quantized $N$-level system. In the latter case, these states reduce to standard fermionic coherent states and the classical Hannay angles coincide with the quantum Berry phases.
Keywords: Berry phase, Hannay angle, action–angle fermionic coherent state.
@article{TMF_2020_202_2_a6,
     author = {H. Lakehal and M. Maamache},
     title = {Hannay angles and {Grassmannian} action-angle quantum states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {278--289},
     year = {2020},
     volume = {202},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a6/}
}
TY  - JOUR
AU  - H. Lakehal
AU  - M. Maamache
TI  - Hannay angles and Grassmannian action-angle quantum states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 278
EP  - 289
VL  - 202
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a6/
LA  - ru
ID  - TMF_2020_202_2_a6
ER  - 
%0 Journal Article
%A H. Lakehal
%A M. Maamache
%T Hannay angles and Grassmannian action-angle quantum states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 278-289
%V 202
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a6/
%G ru
%F TMF_2020_202_2_a6
H. Lakehal; M. Maamache. Hannay angles and Grassmannian action-angle quantum states. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 278-289. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a6/

[1] M. V. Berry, “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. London Ser. A, 392:1802 (1984), 45–57 | DOI | MR

[2] J. H. Hannay, “Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian”, J. Phys. A, 18:2 (1985), 221–230 | DOI | MR

[3] B. Simon, “Holonomy, the quantum adiabatic theorem, and Berry's phase”, Phys. Rev. Lett., 51:24 (1983), 2167–2170 ; J. Anandan, “Geometric angles in quantum and classical physics”, Phys. Lett. A, 129:4 (1988), 201–207 | DOI | MR | DOI | MR

[4] Raul Bott, Chzhen Shen-shen, “Ermitovy vektornye rassloeniya i ravnoraspredelennost nulei ikh golomorfnykh sechenii”, Matematika, 14:2 (1970), 117–154 | MR

[5] R. Montgomery, “The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case”, Commun. Math. Phys., 120:2 (1988), 269–294 ; S. Golin, A. Knauf, S. Marmi, “The Hannay angles: Geometry, adiabaticity, and an example”, 123:1 (1989), 95–122 | DOI | MR | DOI | MR

[6] M. Maamache, J.-P. Provost, G. Vallée, “Berry's phase, Hannay's angle and coherent states”, J. Phys. A: Math. Gen., 23:24 (1990), 5765–5775 | DOI | MR

[7] M. Maamache, J.-P. Provost, G. Vallée, “Berry's phase and Hannay's angle from quantum canonical transformations”, J. Phys. A: Math. Gen., 24:3 (1991), 685–688 | DOI | MR

[8] G. Giavarini, E. Gozzi, D. Rohrlich, W. D. Thacker, “Some connections between classical and quantum anholonomy”, Phys. Rev. D, 39:10 (1989), 3007–3015 | DOI | MR

[9] R. Casalbuoni, “On the quantization of systems with anticommuting variables”, Nuovo Cimento A, 33:1 (1976), 115–125 ; “The classical mechanics for bose-fermi systems”, 33:3 (1976), 389–431 ; F. A. Berezin, M. S. Marinov, “Particle spin dynamics as the grassmann variant of classical mechanics”, Ann. Phys. (N. Y.), 104:2 (1977), 336–362 | DOI | DOI | DOI

[10] E. Gozzi, W. D. Thacker, “Classical adiabatic holonomy in a Grassmannian system”, Phys. Rev. D, 35:8 (1987), 2388–2397 | DOI | MR

[11] E. Gozzi, D. Rohrlich, W. D. Thacker, “Classical adiabatic holonomy in field theory”, Phys. Rev. D, 42:8 (1990), 2752–2762 | DOI | MR

[12] S. Abe, “Adiabatic holonomy and evolution of fermionic coherent state”, Phys. Rev. D, 39:8 (1989), 2327–2331 | DOI | MR

[13] M. Maamache, J. P. Provost, G. Vallée, “Comment on ‘Adiabatic holonomy and evolution of fermionic coherent state’ ”, Phys. Rev. D, 46:2 (1992), 873–875 | DOI | MR

[14] A. Barducci, F. Buccella, R. Casalbuoni, L. Lusanna, E. Sorace, “Quantized Grassmann variables and unified theories”, Phys. Lett. B, 67:3 (1977), 344–346 | DOI

[15] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford, 1993 | DOI | MR

[16] O. Cherbal, M. Drir, M. Maamache, D. A. Trifonov, “Fermionic coherent states for pseudo-Hermitian two-level systems”, J. Phys. A: Math. Theor., 40:8 (2007), 1835–1844, arXiv: quant-ph/0608177 | DOI | MR

[17] G. Najarbashi, M. A. Fasihi, H. Fakhri, “Generalized Grassmannian coherent states for pseudo-Hermitian $n$-level systems”, J. Phys. A: Math. Theor., 43:32 (2010), 325301, 10 pp. | DOI | MR

[18] M. Combescure, D. Robert, “Fermionic coherent states”, J. Phys. A: Math. Theor., 45:24 (2012), 244005, 27 pp. | DOI | MR

[19] D. A. Trifonov, “Nonlinear fermions and coherent states”, J. Phys. A: Math. Theor., 45:24 (2012), 244037, 14 pp., arXiv: 1207.6242 | DOI | MR