Semiclassical asymptotic behavior of the~lower spectral bands of the~Schr\"odinger operator with a~trigonal-symmetric periodic potential
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 264-277
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the semiclassical approximation of the lower bands of the Schrödinger operator with a periodic two-dimensional potential with a trigonal symmetry and consider the cases where the potential has one or two wells in the elementary cell. We obtain the exponentially small asymptotic behavior of the band width and find the dispersion relations. We investigate the form of the Bloch functions. Solving this problem is the first step in studying the more complicated (and more physically interesting) problem of tunnel effects in rotating dimers.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
periodic Schrödinger operator, semiclassical asymptotic behavior, spectral band
Mots-clés : tunnel effect.
                    
                  
                
                
                Mots-clés : tunnel effect.
@article{TMF_2020_202_2_a5,
     author = {A. Yu. Anikin and M. A. Vavilova},
     title = {Semiclassical asymptotic behavior of the~lower spectral bands of {the~Schr\"odinger} operator with a~trigonal-symmetric periodic potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {264--277},
     publisher = {mathdoc},
     volume = {202},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a5/}
}
                      
                      
                    TY - JOUR AU - A. Yu. Anikin AU - M. A. Vavilova TI - Semiclassical asymptotic behavior of the~lower spectral bands of the~Schr\"odinger operator with a~trigonal-symmetric periodic potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 264 EP - 277 VL - 202 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a5/ LA - ru ID - TMF_2020_202_2_a5 ER -
%0 Journal Article %A A. Yu. Anikin %A M. A. Vavilova %T Semiclassical asymptotic behavior of the~lower spectral bands of the~Schr\"odinger operator with a~trigonal-symmetric periodic potential %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 264-277 %V 202 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a5/ %G ru %F TMF_2020_202_2_a5
A. Yu. Anikin; M. A. Vavilova. Semiclassical asymptotic behavior of the~lower spectral bands of the~Schr\"odinger operator with a~trigonal-symmetric periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 264-277. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a5/