Mots-clés : tunnel effect.
@article{TMF_2020_202_2_a5,
author = {A. Yu. Anikin and M. A. Vavilova},
title = {Semiclassical asymptotic behavior of the~lower spectral bands of {the~Schr\"odinger} operator with a~trigonal-symmetric periodic potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {264--277},
year = {2020},
volume = {202},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a5/}
}
TY - JOUR AU - A. Yu. Anikin AU - M. A. Vavilova TI - Semiclassical asymptotic behavior of the lower spectral bands of the Schrödinger operator with a trigonal-symmetric periodic potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 264 EP - 277 VL - 202 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a5/ LA - ru ID - TMF_2020_202_2_a5 ER -
%0 Journal Article %A A. Yu. Anikin %A M. A. Vavilova %T Semiclassical asymptotic behavior of the lower spectral bands of the Schrödinger operator with a trigonal-symmetric periodic potential %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 264-277 %V 202 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a5/ %G ru %F TMF_2020_202_2_a5
A. Yu. Anikin; M. A. Vavilova. Semiclassical asymptotic behavior of the lower spectral bands of the Schrödinger operator with a trigonal-symmetric periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 264-277. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a5/
[1] M. I. Katsnelson, Graphene. Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge, 2012
[2] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl
[3] B. Simon, “Semiclassical analysis of low lying eigenvalues. III. Width of the ground state band in strongly coupled solids”, Ann. Phys., 158:2 (1984), 415–420 | DOI | MR
[4] A. Outassourt, “Comportement semi-classique pour l'opérateur de Schrödinger à potentiel périodique”, J. Func. Anal., 72:1 (1987), 65–93 | DOI | MR
[5] B. Helffer, J. Sjöstrand, “Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation”, Ann. Inst. H. Poincaré. Phys. Théor., 42:2 (1985), 127–212 | MR | Zbl
[6] B. Helffer, J. Sjöstrand, “Multiple wells in the semi-classical limit I”, Comm. Partial Differ. Equ., 9:4 (1984), 337–408 | DOI | MR
[7] V. P. Maslov, “Globalnaya eksponentsialnaya asimptotika reshenii tunnelnykh uravnenii i zadachi o bolshikh ukloneniyakh”, Tr. MIAN SSSR, 163 (1984), 150–180 ; С. Ю. Доброхотов, В. Н. Колокольцов, В. П. Маслов, “Расщепление нижних энергетических уровней уравнения Шредингера и асимптотика фундаментального решения уравнения $hu_t=h^2\Delta u/2-V(x)u$”, ТМФ, 87:3 (1991), 323–375 | MR | Zbl | DOI | MR | Zbl
[8] S. Yu. Dobrokhotov, V. N. Kolokoltsov, “Ob amplitude rasschepleniya nizhnikh energeticheskikh urovnei operatora Shredingera s dvumya simmetrichnymi yamami”, TMF, 94:3 (1993), 426–434 | DOI | MR | Zbl
[9] B. Simon, “Semiclassical analysis of low lying eigenvalues. II. Tunneling”, Ann. Math., 120:1 (1984), 89–118 | DOI | MR
[10] J. Brüning, S. Yu. Dobrokhotov, E. S. Semenov, “Unstable closed trajectories, librations and splitting of the lowest eigenvalues in quantum double well problem”, Regul. Chaotic Dyn., 11:2 (2006), 167–180 | DOI | MR | Zbl
[11] A. Yu. Anikin, “Asymptotic behaviour of the Maupertuis action on a libration and a tunneling in a double well”, Rus. J. Math. Phys., 20:1 (2013), 1–10 | MR
[12] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 ; Е. М. Лифшиц, Л. П. Питаевский, Теоретическая физика, т. 9, Статистическая физика. Часть 2. Теория конденсированного состояния, Физматлит, М., 2004 | MR | MR
[13] E. M. Harrell, “On the rate of asymptotic eigenvalue degeneracy”, Commun. Math. Phys., 60:1 (1978), 73–95 ; “Double wells”, Commun. Math. Phys., 75:3 (1980), 239–261 | DOI | MR | DOI | MR
[14] E. M. Harrell, “The band-structure of a one-dimensional periodic system in a scaling limit”, Ann. Phys., 119:2 (1979), 351–369 | DOI | MR
[15] A. Yu. Anikin, S. Yu. Dobrokhotov, M. I. Katsnelson, “Nizhnyaya chast spektra dvumernogo operatora Shredingera s periodicheskim po odnoi peremennoi potentsialom i prilozheniya k kvantovym dimeram”, TMF, 188:2 (2016), 288–317 | DOI | DOI | MR
[16] C. Fusco, A. Fasolino, T. Janssen, “Nonlinear dynamics of dimers on periodic substrates”, Eur. Phys. J. B, 31:1 (2003), 95–102, arXiv: ; E. Pijper, A. Fasolino, “Mechanisms for correlated surface diffusion of weakly bonded dimers”, Phys. Rev. B, 72:16 (2005), 165328, 5 pp. cond-mat/0301357 | DOI | DOI
[17] V. V. Kozlov, S. V. Bolotin, “Libratsiya v sistemakh so mnogimi stepenyami svobody”, PMM, 42:2 (1978), 245–250 ; “Об асимптотических решениях уравнений динамики”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1980, No 4, 84–89 | DOI | MR | Zbl | MR | Zbl