Wilson loops in exact holographic RG flows at zero and finite temperatures
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 243-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study rectangular timelike Wilson loops at long distances in the exact renormalization group flow in the context of the holographic duality. We consider the five-dimensional holographic model with an exponential dilaton potential. To probe the renormalization group flow backgrounds at zero and finite temperatures, we calculate the minimum surfaces of the corresponding string worldsheets. We show that a holographic renormalization group flow at $T=0$ mimicking the QCD behavior of the running coupling has a confining phase at long distances, while the renormalization group flow with an anti-de Sitter ultraviolet fixed point is nonconfining.
Keywords: renormalization group, holographic quantum chromodynamics, effective potential, AdS/QFT.
@article{TMF_2020_202_2_a4,
     author = {A. A. Golubtsova and V. H. Nguyen},
     title = {Wilson loops in exact holographic {RG} flows at zero and finite temperatures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {243--263},
     year = {2020},
     volume = {202},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a4/}
}
TY  - JOUR
AU  - A. A. Golubtsova
AU  - V. H. Nguyen
TI  - Wilson loops in exact holographic RG flows at zero and finite temperatures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 243
EP  - 263
VL  - 202
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a4/
LA  - ru
ID  - TMF_2020_202_2_a4
ER  - 
%0 Journal Article
%A A. A. Golubtsova
%A V. H. Nguyen
%T Wilson loops in exact holographic RG flows at zero and finite temperatures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 243-263
%V 202
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a4/
%G ru
%F TMF_2020_202_2_a4
A. A. Golubtsova; V. H. Nguyen. Wilson loops in exact holographic RG flows at zero and finite temperatures. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 243-263. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a4/

[1] J. M. Maldacena, “The large $N$ limit of superconformal field theories and supergravity”, Internat. J. Theor. Phys., 38:4 (1999), 1113–1133 ; Adv. Theor. Math. Phys., 2:2 (1998), 231–252, arXiv: hep-th/9711200 | DOI | MR | Zbl | MR | Zbl

[2] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B, 428:1–2 (1998), 105–114, arXiv: hep-th/9802109 | DOI | MR | Zbl

[3] E. Witten, “Anti de Sitter space and holography”, Adv. Theor. Math. Phys., 2:2 (1998), 253–291, arXiv: hep-th/9802150 | DOI | MR | Zbl

[4] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U. A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, Cambridge Univ. Press, Cambridge, 2014, arXiv: 1101.0618 | DOI

[5] I. Ya. Arefeva, “Golograficheskoe opisanie kvark-glyuonnoi plazmy, obrazuyuscheisya pri stolknoveniyakh tyazhelykh ionov”, UFN, 184:6 (2014), 569–598 | DOI | DOI

[6] J. de Boer, E. P. Verlinde, H. L. Verlinde, “On the holographic renormalization group”, JHEP, 08 (2000), 003, 15 pp., arXiv: hep-th/9912012 | DOI | MR

[7] H. J. Boonstra, K. Skenderis, P. K. Townsend, “The domain wall/QFT correspondence”, JHEP, 01 (1999), 003, 17 pp., arXiv: hep-th/9807137 | DOI | MR

[8] M. Bianchi, D. Z. Freedman, K. Skenderis, “Holographic renormalization”, Nucl. Phys. B, 631:1–2 (2002), 159–194, arXiv: hep-th/0112119 | DOI | MR | Zbl

[9] K. Skenderis, “Lecture notes on holographic renormalization”, Class. Quant. Grav., 19:22 (2002), 5849–5876, arXiv: hep-th/0209067 | DOI | MR

[10] E. T. Akhmedov, “A remark on the AdS/CFT correspondence and the renormalization group flow”, Phys. Lett. B, 442:1–4 (1998), 152–158, arXiv: hep-th/9806217 | DOI | MR

[11] U. Gürsoy, E. Kiritsis, “Exploring improved holographic theories for QCD: part I”, JHEP, 02 (2008), 032, 56 pp., arXiv: 0707.1324 | DOI | MR

[12] U. Gürsoy, E. Kiritsis, F. Nitti, “Exploring improved holographic theories for QCD: part II”, JHEP, 02 (2008), 019, 75 pp., arXiv: 0707.1349 | DOI | MR

[13] M. Järvinen, E. Kiritsis, “Holographic models for QCD in the Veneziano limit”, JHEP, 03 (2012), 002, arXiv: 1112.1261 | DOI

[14] D. Giataganas, U. Gürsoy, J. F. Pedraza, “Strongly coupled anisotropic gauge theories and holography”, Phys. Rev. Lett., 121:12 (2018), 121601, 7 pp., arXiv: 1708.05691 | DOI

[15] U. Gürsoy, M. Järvinen, G. Nijs, J. F. Pedraza, “Inverse anisotropic catalysis in holographic QCD”, JHEP, 04 (2019), 071, 40 pp., arXiv: 1811.11724 | DOI | MR

[16] I. Aref'eva, K. Rannu, “Holographic anisotropic background with confinement-deconfinement phase transition”, JHEP, 05 (2018), 206, 57 pp., arXiv: 1802.05652 | DOI | MR

[17] I. Y. Aref'eva, A. A. Golubtsova, G. Policastro, “Exact holographic RG flows and the $A_1\times A_1$ Toda chain”, JHEP, 05 (2019), 117, 51 pp., arXiv: 1803.06764 | DOI

[18] U. Gürsoy, M. Järvinen, G. Policastro, “Late time behavior of non-conformal plasmas”, JHEP, 01 (2016), 134, 30 pp., arXiv: 1507.08628 | DOI | MR | Zbl

[19] U. Gürsoy, “Continuous Hawking-Page transitions in Einstein-scalar gravity”, JHEP, 01 (2011), 086, 41 pp., arXiv: 1007.0500 | DOI | MR

[20] H. Lü, C. N. Pope, E. Sezgin, K. S. Stelle, “Dilatonic $p$-brane solitons”, Phys. Lett. B, 371:1–2 (1996), 46–50, arXiv: hep-th/9511203 | DOI | MR

[21] E. Kiritsis, W. Li, F. Nitti, “Holographic RG flow and the quantum effective action”, Fortsch. Phys., 62:5–6 (2014), 389–454, arXiv: 1401.0888 | DOI | MR | Zbl

[22] J. M. Maldacena, “Wilson loops in large $N$ field theories”, Phys. Rev. Lett., 80:22 (1998), 4859–4862, arXiv: hep-th/9803002 | DOI | MR

[23] S.-J. Rey, J.-T. Yee, “Macroscopic strings as heavy quarks: large-$N$ gauge theory and anti-de Sitter supergravity”, Eur. Phys. J. C, 22:2 (2001), 379–394, arXiv: hep-th/9803001 | DOI | MR

[24] S.-J. Rey, S. Theisen, J.-T. Yee, “Wilson–Polyakov loop at finite temperature in large-$N$ gauge theory and anti-de Sitter supergravity”, Nucl. Phys. B, 527:1–2 (1998), 171–186, arXiv: hep-th/9803135 | DOI | MR

[25] A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Yankielowicz, “Wilson loops, confinement, and phase transitions in large $N$ gauge theories from supergravity”, JHEP, 06 (1998), 001, 20 pp., arXiv: hep-th/9803263 | DOI | MR

[26] J. Distler, F. Zamora, “Non-supersymmetric conformal field theories from stable anti-de Sitter spaces”, Adv. Theor. Math. Phys., 2:6 (1999), 1405–1439, arXiv: hep-th/9810206 | DOI | MR

[27] L. Girardello, M. Petrini, M. Porrati, A. Zaffaroni, “Confinement and condensates without fine tuning in supergravity duals of gauge theories”, JHEP, 05 (1999), 026, 23 pp., arXiv: hep-th/9903026 | DOI

[28] L. Girardello, M. Petrini, M. Porrati, A. Zaffaroni, “The Supergravity dual of $N=1$ super Yang–Mills theory”, Nucl. Phys. B, 569:1–3 (2000), 451–469, arXiv: hep-th/9909047 | DOI | MR

[29] A. Zaffaroni, “The holographic RG flow to conformal and non-conformal theory”, PoS(TMR99), 1999, 053, 11 pp., arXiv: hep-th/0002172 | DOI

[30] I. Aref'eva, K. Rannu, P. Slepov, “Orientation dependence of confinement-deconfinement phase transition in anisotropic media”, Phys. Lett. B, 792 (2019), 470–475, arXiv: 1808.05596 | DOI

[31] J. Casalderrey-Solana, D. Gutiez, C. Hoyos, “Effective long distance $q\bar{q}$ potential in holographic RG flows”, JHEP, 04 (2019), 134, 34 pp., arXiv: 1902.04279 | DOI | MR

[32] I. Aref'eva, “Holography for heavy-ion collisions at LHC and NICA. Results of the last two years”, EPJ Web Conf., 191 (2018), 05010, 8 pp. | DOI

[33] D. Giataganas, “Probing strongly coupled anisotropic plasma”, JHEP, 07 (2012), 031, arXiv: 1202.4436 | DOI

[34] S. S. Gubser, “Curvature singularities: the Good, the bad and the naked”, Adv. Theor. Math. Phys., 4:3 (2000), 679–745, arXiv: hep-th/0002160 | DOI | MR

[35] R. E. Aria, G. A. Silva, “Wilson loops stability in the gauge/string correspondence”, JHEP, 01 (2010), 023, 47 pp., arXiv: 0911.0662 | DOI | MR