@article{TMF_2020_202_2_a3,
author = {A. Jourjine},
title = {The~quantum theory of {the~Lorentzian} fermionic differential forms},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {207--242},
year = {2020},
volume = {202},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a3/}
}
A. Jourjine. The quantum theory of the Lorentzian fermionic differential forms. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 207-242. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a3/
[1] D. Iwanenko, L. Landau, “Zur Theorie des magnetischen Elektrons. I”, Z. Phys., 48:5–6 (1928), 340–348 | DOI
[2] P. A. M. Dirac, “The quantum theory of the electron”, Proc. Roy. Soc. London Ser. A, 117:778 (1928), 610–624 | DOI
[3] E. Kähler, “Der innere Differentialkalkül”, Rend. Mat. Appl., 21 (1962), 425–523 | MR
[4] W. Graf, “Differential forms as spinors”, Ann. Inst. H. Poincaré Sect. A (N. S.), 29:1 (1978), 85–109 | MR
[5] I. M. Benn, R. W. Tucker, “A generation model based on Kähler fermions”, Phys. Lett. B, 119:4–6 (1982), 348–350 | DOI
[6] T. Banks, Y. Dothan, D. Horn, “Geometric fermions”, Phys. Lett. B, 117:6 (1982), 413–417 | DOI | MR
[7] P. Becher, H. Joos, “The Dirac–Kähler equation and fermions on the lattice”, Z. Phys. C, 15:4 (1982), 343–365 | DOI | MR
[8] B. Holdom, “Gauged fermions from tensor fields”, Nucl. Phys. B, 233:3 (1984), 413–432 | DOI | MR
[9] A. N. Jourjine, “Space-time Dirac–Kahler spinors”, Phys. Rev. D, 35:2 (1987), 757–758 | DOI | MR
[10] I. M. Benn, R. W. Tucker, “Fermions without spinors”, Commun. Math. Phys., 89:3 (1983), 341–362 | DOI | MR
[11] D. D. Ivanenko, Yu. N. Obukhov, S. N. Solodukhin, On antisymmetric tensor representation of the Dirac equation, ICTP Preprint IC/85/2, ICTP, Trieste, 1985
[12] J. Kato, N. Kawamoto, A. Miyake, “$N=4$ twisted superspace from Dirac–Kähler twist and off-shell SUSY invariant actions in four dimensions”, Nucl. Phys. B, 721:1–3 (2005), 229–286, arXiv: hep-th/0502119 | DOI | MR
[13] K. Nagata, Y.-S. Wu, “Twisted supersymmetric invariant formulation of Chern–Simons gauge theory on a lattice”, Phys. Rev. D, 78:6 (2008), 065002, 13 pp., arXiv: 0803.4339 | DOI
[14] F. Bruckmann, S. Catterall, M. de Kok, “Critique of the link approach to exact lattice supersymmetry”, Phys. Rev. D, 75:4 (2007), 045016, 8 pp., arXiv: hep-lat/0611001 | DOI
[15] S. Arianos, A. D'Adda, N. Kawamoto, J. Saito, “Lattice supersymmetry in 1D with two supercharges”, PoS (LATTICE 2007), 42 (2007), 259, 14 pp., arXiv: 0710.0487 | DOI
[16] K. Nagata, “On the continuum and lattice formulations of $N=4$ $D=3$ twisted super Yang–Mills”, JHEP, 01 (2008), 041, 29 pp., arXiv: 0710.5689 | DOI | MR
[17] H. Echigoya, T. Miyazaki, De Rham–Kodaira's theorem and dual gauge transformations, arXiv: hep-th/0011263
[18] Y.-G. Miao, R. Manvelyana, H. J. W. Muller-Kirsten, “Self-duality beyond chiral $p$-form actions”, Phys. Lett. B, 482:1–3 (2000), 264–270, arXiv: hep-th/0002060 | DOI | MR
[19] B. de Wit, M. van Zalk, “Supergravity and M-theory”, Gen. Rel. Grav., 41:4 (2009), 757–784, arXiv: 0901.4519 | DOI | MR
[20] T. Kobayashi, S. Yokoyama, “Gravitational waves from $p$-form inflation”, JCAP, 2009:4 (2009), 004, 9 pp., arXiv: 0903.2769 | DOI
[21] A. N. Jourjine, “Mass mixing, the fourth generation, and the kinematic Higgs mechanism”, Phys. Lett. B, 693:2 (2010), 149–154, arXiv: 1005.3593 | DOI
[22] A. N. Jourjine, “The spectrum of the 4-generation Dirac–Kähler extension of the SM”, Phys. Lett. B, 695:5 (2011), 482–488, arXiv: 1011.0382 | DOI | MR
[23] A. N. Jourjine, “Scalar spin of elementary fermions”, Phys. Lett. B, 728 (2014), 347–357, arXiv: 1307.2694 | DOI
[24] P. Salgado, S. Salgado, “Extended gauge theory and gauged free differential algebras”, Nucl. Phys. B, 926 (2018), 179–199, arXiv: 1702.07819 | DOI | MR
[25] A. Jourjine, Extended gauge theory, bi-spinors, and scalar supersymmetry, arXiv: 1706.01269
[26] K. Itsikson, Zh.-B. Zyuber, Kvantovaya teoriya polya, Mir, M., 1984 | MR