Discrete Crum's theorems and lattice KdV-type equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 187-206
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop Darboux transformations ($DTs$) and their associated Crum's formulas for two Schrödinger-type difference equations that are themselves discretized versions of the spectral problems of the KdV and modified KdV equations. With DTs viewed as a discretization process, classes of semidiscrete and fully discrete KdV-type systems, including the lattice versions of the potential KdV, potential modified KdV, and Schwarzian KdV equations, arise as the consistency condition for the differential/difference spectral problems and their DTs. The integrability of the underlying lattice models, such as Lax pairs, multidimensional consistency, $\tau$-functions, and soliton solutions, can be easily obtained by directly applying the discrete Crum's formulas.
Keywords:
discrete Crum's theorem, exact discretization, discrete Schrödinger equation, lattice KdV equations.
Mots-clés : Darboux transformation
Mots-clés : Darboux transformation
@article{TMF_2020_202_2_a2,
author = {Cheng Zhang and Linyu Peng and Da-jun Zhang},
title = {Discrete {Crum's} theorems and lattice {KdV-type} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {187--206},
publisher = {mathdoc},
volume = {202},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a2/}
}
TY - JOUR AU - Cheng Zhang AU - Linyu Peng AU - Da-jun Zhang TI - Discrete Crum's theorems and lattice KdV-type equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 187 EP - 206 VL - 202 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a2/ LA - ru ID - TMF_2020_202_2_a2 ER -
Cheng Zhang; Linyu Peng; Da-jun Zhang. Discrete Crum's theorems and lattice KdV-type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 187-206. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a2/