Generalized Picard–Fuchs operators from Whitham hierarchy in $\mathcal N=2$ supersymmetric gauge theory with massless hypermultiplets
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 170-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the Whitham hierarchy, we obtain the Picard–Fuchs equations in $\mathcal N=2$ supersymmetric Yang–Mills theory for a classical gauge group with $N_\mathrm{f}$ massless hypermultiplets. In the general case for $N_\mathrm{f}\ne0$, there are at least $r-2$ Picard–Fuchs equations that can be computed exactly from the commutation relations of the meromorphic differentials defined up to a linear combination of holomorphic differentials on the Seiberg–Witten hyperelliptic curve. Using Euler operator techniques, we study the Picard–Fuchs equations, including instanton corrections. Moreover, using symbolic computer calculations, we can obtain a complete set of Picard–Fuchs equations.
Mots-clés : Picard–Fuchs equation, instanton correction.
Keywords: Whitham hierarchy, meromorphic differential, Euler operator
@article{TMF_2020_202_2_a1,
     author = {Jialiang Dai},
     title = {Generalized {Picard{\textendash}Fuchs} operators from {Whitham} hierarchy in $\mathcal N=2$ supersymmetric gauge theory with massless hypermultiplets},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {170--186},
     year = {2020},
     volume = {202},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a1/}
}
TY  - JOUR
AU  - Jialiang Dai
TI  - Generalized Picard–Fuchs operators from Whitham hierarchy in $\mathcal N=2$ supersymmetric gauge theory with massless hypermultiplets
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 170
EP  - 186
VL  - 202
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a1/
LA  - ru
ID  - TMF_2020_202_2_a1
ER  - 
%0 Journal Article
%A Jialiang Dai
%T Generalized Picard–Fuchs operators from Whitham hierarchy in $\mathcal N=2$ supersymmetric gauge theory with massless hypermultiplets
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 170-186
%V 202
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a1/
%G ru
%F TMF_2020_202_2_a1
Jialiang Dai. Generalized Picard–Fuchs operators from Whitham hierarchy in $\mathcal N=2$ supersymmetric gauge theory with massless hypermultiplets. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 170-186. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a1/

[1] N. Seiberg, E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B, 426:1 (1994), 19–52, arXiv: hep-th/9407087 | DOI | MR

[2] N. Seiberg, E. Witten, “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nucl. Phys. B, 431:3 (1994), 484–550, arXiv: hep-th/9408099 | DOI | MR

[3] H. Itoyama, A. Morozov, “Integrability and Seiberg–Witten theory curves and periods”, Nucl. Phys. B, 477:3 (1996), 855–877, arXiv: hep-th/9511126 | DOI | MR

[4] E. D'Hoker, I. M. Krichever, D. H. Phong, “The effective prepotential of $N=2$ supersymmetric $SU(N_\mathrm{c})$ gauge theories”, Nucl. Phys. B, 489:1 (1997), 179–210, arXiv: hep-th/9609041 | DOI | MR

[5] E. D'Hoker, I. M. Krichever, D. H. Phong, “The effective prepotential of $N=2$ supersymmetric $SO(N_\mathrm{c})$ and $Sp(N_\mathrm{c})$ gauge theories”, Nucl. Phys. B, 489:1 (1997), 211–222, arXiv: hep-th/9609145 | DOI | MR

[6] M. Alishahiha, “On the Picard–Fuchs equations of the SW models”, Phys. Lett. B, 398 (1997), 100–103, arXiv: hep-th/9609157 | DOI | MR

[7] J. M. Isidro, “Integrability, Seiberg–Witten models and Picard–Fuchs equations”, JHEP, 01 (2001), 043, 12 pp., arXiv: hep-th/0011253 | DOI | MR

[8] J. M. Isidro, A. Mukherjee, J. P. Nunes, H. J. Schnitzer, “A new derivation of the Picard–Fuchs equations for effective $N=2$ super Yang–Mills theories”, Nucl. Phys. B, 492:3 (1997), 647–681, arXiv: hep-th/9609116 | DOI | MR

[9] J. M. Isidro, A. Mukherjee, J. P. Nunes, H. J. Schnitzer, “On the Picard–Fuchs equations for massive $N=2$ Seiberg–Witten theories”, Nucl. Phys. B, 502:1–2 (1997), 363–382, arXiv: hep-th/9704174 | DOI | MR

[10] T. Eguchi, S. K. Yang, “Prepotentials of $N=2$ supersymmetric gauge theories and soliton equations”, Modern Phys. Lett. A, 11:2 (1996), 131–138, arXiv: hep-th/9510183 | DOI | MR

[11] A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Sci., Singapore, 1999 | DOI | MR

[12] T. Nakatsu, K. Takasaki, “Whitham–Toda hierarchy and $N=2$ supersymmetric Yang–Mills theory”, Modern Phys. Lett. A, 11:2 (1996), 157–168, arXiv: hep-th/9509162 | DOI | MR

[13] K. Takasaki, “Whitham deformations and tau function in $N=2$ supersymmetric gauge theories”, Prog. Theor. Phys. Suppl., 135 (1999), 53–74, arXiv: hep-th/9905224 | DOI | MR

[14] K. Takasaki, “Whitham deformations of Seiberg–Witten curves for classical gauge groups”, Internat. J. Modern Phys. A, 15:23 (2000), 3635–3666, arXiv: hep-th/9901120 | DOI | MR

[15] J. D. Edelstein, J. Mas, “$N=2$ supersymmetric Yang–Mills theories and Whitham integrable hierarchies”, AIP Conf. Proc., 484 (2008), 195–212, arXiv: hep-th/9902161 | DOI | MR

[16] A. Marshakov, N. A. Nekrasov, “Extended Seiberg–Witten theory and integrable hierarchy”, JHEP, 01 (2007), 104, 40 pp., arXiv: hep-th/0612019 | DOI | MR

[17] A. Gorsky, A. Milekhin, “RG-Whitham dynamics and complex Hamiltonian systems”, Nucl. Phys. B, 895 (2015), 33–63, arXiv: hep-th/1408.0425 | DOI | MR

[18] A. Gorsky, A. Marshakov, A. Mironov, A. Morozov, “RG equations from Whitham hierarchy”, Nucl. Phys. B, 527:3 (1998), 690–716, arXiv: hep-th/9802007 | DOI | MR

[19] Y. Ohta, “Picard–Fuchs equation and Whitham hierarchy in $N=2$ supersymmetric ${SU(r+1)}$ Yang–Mills theories”, J. Math. Phys., 40:12 (1999), 6292–6301, arXiv: hep-th/9906207 | DOI | MR

[20] J. D. Edelstein, M. Gómes-Reino, M. Mariño, J. Mas, “$N=2$ supersymmetric gauge theories with massive hypermultiplets and the Whitham hierarchy”, Nucl. Phys. B, 574:1–2 (2000), 587–619, arXiv: hep-th/9911115 | DOI | MR

[21] L. Chekhov, A. Mironov, “Matrix models vs. Seiberg–Witten/Whitham theories”, Phys. Lett. B, 552:3–4 (2003), 293–302, arXiv: hep-th/0209085 | DOI | MR

[22] Tszya-Lyan Dai, En-Gui Fan, “Ierarkhiya Uizema i obobschennye operatory Pikara–\allowbreakFuksa v $\mathcal N=2$ supersimmetrichnoi teorii Yanga–Millsa dlya klassicheskikh kalibrovochnykh grupp”, TMF, 198:3 (2019), 365–380 | DOI | DOI

[23] A. Hanany, Y. Oz, “On the quantum moduli space of vacua of $N=2$ supersymmetric $SU(N_\mathrm{c})$ gauge theories”, Nucl. Phys. B, 452:1 (1995), 283–312, arXiv: hep-th/9505075 | DOI | MR

[24] A. Hanany, “On the quantum moduli space of $N=2$ supersymmetric gauge theories”, Nucl. Phys. B, 466:1 (1996), 85–100, arXiv: hep-th/9509176 | DOI | MR

[25] T. Eguchi, K. Hori, K. Ito, S.-K. Yang, “Study of $N=2$ superconformal field theories in 4 dimensions”, Nucl. Phys. B, 471:3 (1996), 430–442, arXiv: hep-th/9603002 | DOI | MR