@article{TMF_2020_202_2_a0,
author = {A. B. Yakhshimuratov},
title = {Integration of a~higher-order nonlinear {Schr\"odinger} system with a~self-consistent source in the~class of periodic functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {157--169},
year = {2020},
volume = {202},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a0/}
}
TY - JOUR AU - A. B. Yakhshimuratov TI - Integration of a higher-order nonlinear Schrödinger system with a self-consistent source in the class of periodic functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 157 EP - 169 VL - 202 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a0/ LA - ru ID - TMF_2020_202_2_a0 ER -
%0 Journal Article %A A. B. Yakhshimuratov %T Integration of a higher-order nonlinear Schrödinger system with a self-consistent source in the class of periodic functions %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 157-169 %V 202 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a0/ %G ru %F TMF_2020_202_2_a0
A. B. Yakhshimuratov. Integration of a higher-order nonlinear Schrödinger system with a self-consistent source in the class of periodic functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 2, pp. 157-169. http://geodesic.mathdoc.fr/item/TMF_2020_202_2_a0/
[1] G. Agraval, Nelineinaya volokonnaya optika, Mir, M., 1996
[2] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR
[3] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London, 1982 | MR | Zbl
[4] V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys., 9:2 (1968), 190–194 | DOI
[5] V. E. Zakharov, A. B. Shabat, “O vzaimodeistvii solitonov v ustoichivoi srede”, ZhETF, 64:5 (1973), 1627–1639
[6] V. E. Zakharov, S. V. Manakov, “O polnoi integriruemosti nelineinogo uravneniya Shredingera”, TMF, 19:3 (1974), 332–343 | DOI | MR | Zbl
[7] J. Satsuma, N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media”, Progr. Theor. Phys. Suppl., 55 (1974), 284–306 | DOI | MR
[8] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl
[9] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl
[10] Yu. A. Mitropolskii, N. N. Bogolyubov (ml.), A. K. Prikarpatskii, V. G. Samoilenko, Integriruemye dinamicheskie sistemy: spektralnye i differentsialno-geometricheskie aspekty, Naukova dumka, Kiev, 1987 | MR
[11] A. R. Its, “Obraschenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenii”, Vestn. Leningr. un-ta. Ser. Matem. Mekhan. Astron., 7:2 (1976), 39–46 | MR | Zbl
[12] A. R. Its, V. P. Kotlyarov, “Yavnye formuly dlya reshenii nelineinogo uravneniya Shredingera”, Dokl. AN USSR. Cer. A, 1976, no. 11, 965–968 | MR | Zbl
[13] V. B. Matveev, M. I. Yavor, “Solutions presque périodiques et a $N$-solitons de l'équation hydrodynamique non linéaire de Kaup”, Ann. Inst. H. Poincaré Sect. A (N. S.), 31:1 (1979), 25–41 | MR
[14] A. R. Its, “Asimptotika reshenii nelineinogo uravneniya Shredingera i izomonodromnye deformatsii sistem lineinykh differentsialnykh uravnenii”, Dokl. AN SSSR, 261:1 (1981), 14–18 | MR | Zbl
[15] N. N. Bogolyubov (ml.), A. K. Prikarpatskii, A. M. Kurbatov, V. G. Samoilenko, “Nelineinaya model tipa Shredingera: zakony sokhraneniya, gamiltonova struktura i polnaya integriruemost”, TMF, 65:2 (1985), 271–284 | DOI | MR | Zbl
[16] M. V. Babich, A. I. Bobenko, V. B. Matveev, “Resheniya nelineinykh uravnenii, integriruemykh metodom obratnoi zadachi, v teta-funktsiyakh Yakobi i simmetrii algebraicheskikh krivykh”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 511–529 | DOI | MR | Zbl
[17] E. D. Belokolos, A. I. Bobenko, V. B. Matveev, V. Z. Enolskii, “Algebro-geometricheskie printsipy superpozitsii konechnozonnykh reshenii integriruemykh nelineinykh uravnenii”, UMN, 41:2(248) (1986), 3–42 | DOI | MR | Zbl
[18] N. N. Akhmediev, V. I. Korneev, “Modulyatsionnaya neustoichivost i periodicheskie resheniya nelineinogo uravneniya Shredingera”, TMF, 69:2 (1986), 189–194 | DOI | MR | Zbl
[19] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, “Tochnye resheniya pervogo poryadka nelineinogo uravneniya Shredingera”, TMF, 72:2 (1987), 183–196 | DOI | MR | Zbl
[20] A. R. Its, A. V. Rybin, M. A. Sall, “K voprosu o tochnom integrirovanii nelineinogo uravneniya Shredingera”, TMF, 74:1 (1988), 29–45 | DOI | MR | Zbl
[21] R. F. Bikbaev, A. R. Its, “Algebrogeometricheskie resheniya kraevoi zadachi dlya nelineinogo uravneniya Shredingera”, Matem. zametki, 45:5 (1989), 3–9 | DOI | MR | Zbl
[22] G. L. Alfimov, A. R. Its, N. E. Kulagin, “O modulyatsionnoi neustoichivosti reshenii nelineinogo uravneniya Shredingera”, TMF, 84:2 (1990), 163–172 | DOI | MR | Zbl
[23] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Matem. sb., 185:8 (1994), 103–114 | DOI | MR | Zbl
[24] A. O. Smirnov, “Ellipticheskie po $t$ resheniya nelineinogo uravneniya Shredingera”, TMF, 107:2 (1996), 188–200 | DOI | DOI | MR | Zbl
[25] V. K. Mel'nikov, “A direct method for deriving a multisoliton solution for the problem of interaction of waves on the $x,y$ plane”, Commun. Math. Phys., 112:4 (1987), 639–652 | DOI | MR
[26] V. K. Mel'nikov, “Integration method of the Korteweg–de Vries equation with a self-consistent source”, Phys. Lett. A, 133:9 (1988), 493–496 | DOI | MR
[27] V. K. Mel'nikov, “Integration of the nonlinear Schrödinger equation with a self-consistent source”, Commun. Math. Phys., 137:2 (1991), 359–381 | DOI | MR
[28] V. K. Mel'nikov, “Integration of the Korteweg–de Vries equation with a source”, Inverse Problems, 6:2 (1990), 233–246 | DOI | MR
[29] J. Leon, A. Latifi, “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A: Math. Gen., 23:8 (1990), 1385–1403 | DOI | MR
[30] C. Claude, A. Latifi, J. Leon, “Nonlinear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32:12 (1991), 3321–3330 | DOI | MR
[31] V. S. Shchesnovich, E. V. Doktorov, “Modified Manakov system with self-consistent source”, Phys. Lett. A, 213:1–2 (1996), 23–31 | DOI | MR
[32] Y. Zeng, W.-X. Ma, R. Lin, “Integration of the soliton hierarchy with self-consistent sources”, J. Math. Phys., 41:8 (2000), 5453–5489 | DOI | MR
[33] Y. Shao, Y. Zeng, “The solutions of the NLS equations with self-consistent sources”, J. Phys. A: Math. Gen., 38:11 (2005), 2441–2467, arXiv: nlin/0412071 | DOI | MR
[34] A. B. Yakhshimuratov, “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions”, Math. Phys. Anal. Geom., 14:2 (2011), 153–169 | DOI | MR
[35] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology, and Mathematical Physics. S. P. Novikov's Seminar: 2006–2007, American Mathematical Society Translations. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 125–138 | DOI | MR
[36] A. B. Khasanov, A. B. Yakhshimuratov, “Ob uravnenii Kortevega–de Friza s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, TMF, 164:2 (2010), 214–221 | DOI | DOI
[37] A. Cabada, A. Yakhshimuratov, “The system of Kaup equations with a self-consistent source in the class of periodic functions”, Zhurn. matem. fiz., anal., geom., 9:3 (2013), 287–303 | MR
[38] B. A. Babajanov, M. Fečkan, G. U. Urazbaev, “On the periodic Toda lattice hierarchy with an integral source”, Commun. Nonlinear Sci. Numer. Simul., 52 (2017), 110–123 | DOI | MR
[39] B. M. Levitan, I. Sh. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR
[40] T. V. Misyura, “Kharakteristika spektrov periodicheskoi i antiperiodicheskoi kraevykh zadach, porozhdaemykh operatsiei Diraka I”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 30, ed. V. A. Marchenko, Vischa shkola, Kharkov, 1978, 90–101 ; “Характеристика спектров периодической и антипериодической краевых задач, порождаемых операцией Дирака II”, 31, 1979, 102–109 ; “Конечнозонные операторы Дирака”, 33, 1980, 107–111; “Аппроксимация периодического потенциала оператора Дирака конечнозонными”, 36, 1981, 55–65; “Асимптотическая формула для вейлевских решений уравнений Дирака”, 57, 1992, 33–50 | MR | Zbl | MR | Zbl | MR
[41] A. B. Khasanov, A. B. Yakhshimuratov, “Analog obratnoi teoremy G. Borga dlya operatora Diraka”, Uzb. matem. zhurn., 2000, no. 3–4, 40–46
[42] S. Currie, T. Roth, B. Watson, “Borg's periodicity theorems for first-order self-adjoint systems with complex potentials”, Proc. Edinb. Math. Soc., 60:3 (2017), 615–633 | DOI | MR
[43] A. B. Khasanov, A. M. Ibragimov, “Ob obratnoi zadache dlya operatora Diraka s periodicheskim potentsialom”, Uzb. matem. zhurn., 2001, no. 3–4, 48–55
[44] V. A. Marchenko, Operatory Shturma–Liuvilya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR