Skew information revisited: Its variants and a comparison of them
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 116-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Skew information was introduced by Wigner and Yanase in the context of quantum measurements. It was later recognized that skew information in addition to its original significance as a measure of the information content of states admits several interpretations of a more physical and information theory nature. This quantity has now found many applications in quantum information. An intriguing and subtle feature of skew information is the involvement of the square root of quantum states (density operators). Comparing skew information with some of its natural modifications reveals mathematical and also physical reasons for using the square root. We further use skew information to quantify the asymmetry of quantum states with respect to group representations.
Keywords: skew information, square root, convexity, quantum coherence, variance.
@article{TMF_2020_202_1_a8,
     author = {Shunlong Luo and Yuan Sun},
     title = {Skew information revisited: {Its} variants and a~comparison of them},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {116--125},
     year = {2020},
     volume = {202},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a8/}
}
TY  - JOUR
AU  - Shunlong Luo
AU  - Yuan Sun
TI  - Skew information revisited: Its variants and a comparison of them
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 116
EP  - 125
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a8/
LA  - ru
ID  - TMF_2020_202_1_a8
ER  - 
%0 Journal Article
%A Shunlong Luo
%A Yuan Sun
%T Skew information revisited: Its variants and a comparison of them
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 116-125
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a8/
%G ru
%F TMF_2020_202_1_a8
Shunlong Luo; Yuan Sun. Skew information revisited: Its variants and a comparison of them. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 116-125. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a8/

[1] E. P. Wigner, M. M. Yanase, “Information contents of distributions”, Proc. Nat. Acad. Sci. USA, 49:6 (1963), 910–918 | DOI | MR

[2] E. H. Lieb, M. B. Ruskai, “A fundamental property of quantum-mechanical entropy”, Phys. Rev. Lett., 30:10 (1973), 434–436 | DOI | MR

[3] E. H. Lieb, “Convex trace functions and the Wigner–Yanase–Dyson conjecture”, Adv. Math., 11:3 (1973), 267–288 | DOI | MR

[4] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR

[5] Sh. L. Luo, “Kvantovaya i klassicheskaya neopredelennosti”, TMF, 143:2 (2005), 231–240 | DOI | DOI | MR | Zbl

[6] S. Luo, “Heisenberg uncertainty relation for mixed states”, Phys. Rev. A, 72:4 (2005), 042110, 3 pp. | DOI

[7] S. Luo, “Quantum uncertainty of mixed states based on skew information”, Phys. Rev. A, 73:2 (2006), 022324 | DOI | MR

[8] S. Luo, Y. Sun, “Quantum coherence versus quantum uncertainty”, Phys. Rev. A, 96:2 (2017), 022130, 5 pp. | DOI | MR

[9] S. Luo, S. Fu, C. H. Oh, “Quantifying correlations via the Wigner–Yanase skew information”, Phys. Rev. A, 85:3 (2012), 032117, 7 pp. | DOI

[10] L. Li, Q.-W. Wang, S.-Q. Shen, M. Li, “Measurement-induced nonlocality based on Wigner–Yanase skew information”, Europhys. Lett., 114:1 (2016), 10007 | DOI

[11] Y. Sun, Y. Mao, S. Luo, “From quantum coherence to quantum correlations”, Europhys. Lett., 118:6 (2017), 60007, 7 pp. | DOI

[12] D. Girolami, “Observable measure of quantum coherence in finite dimensional systems”, Phys. Rev. Lett., 113:17 (2014), 170401, 5 pp., arXiv: 1403.2446 | DOI

[13] C. Yu, “Quantum coherence via skew information and its polygamy”, Phys. Rev. A, 95:4 (2017), 042337, 12 pp., arXiv: 1704.04871 | DOI

[14] S. Luo, Y. Sun, “Partial coherence with application to the monotonicity problem of coherence involving skew information”, Phys. Rev. A, 96:2 (2017), 022136, 5 pp. | DOI

[15] S. Luo, Y. Sun, “Coherence and complementarity in state-channel interaction”, Phys. Rev. A, 98:1 (2018), 012113, 8 pp. | DOI

[16] G. Karpat, B. Cakmak, F. F. Fanchini, “Quantum coherence and uncertainty in the anisotropic XY chain”, Phys. Rev. B, 90:10 (2014), 104431, 7 pp., arXiv: 1404.6427 | DOI

[17] A. L. Malvezzi, G. Karpat, B. Çakmak, F. F. Fanchini, T. Debarba, R. O. Vianna, “Quantum correlations and coherence in spin-1 Heisenberg chains”, Phys. Rev. B, 93:18 (2016), 184428, 8 pp., arXiv: 1602.03731 | DOI

[18] Y.-C. Li, H.-Q. Lin, “Quantum coherence and quantum phase transitions”, Sci. Rep., 6 (2016), 26365, 8 pp. | DOI

[19] S. Lei, P. Tong, “Wigner–Yanase skew information and quantum phase transition in one-dimensional quantum spin-$1/2$ chains”, Quantum Inf. Process., 15:4 (2016), 1811–1825 | DOI | MR

[20] L. Qiu, D. Quan, F. Pan, Z. Liu, “Skew information in the XY model with staggered Dzyaloshinskii–Moriya interaction”, Phys. B, 514 (2017), 13–18 | DOI

[21] K. Yanagi, S. Furuichi, K. Kuriyama, “A generalized skew information and uncertainty relation”, IEEE Trans. Inform. Theory, 51:12 (2005), 4401–4404 | DOI | MR

[22] S. Furuichi, “Schrödinger uncertainty relation with Wigner–Yanase skew information”, Phys. Rev. A, 82:3 (2010), 034101, 3 pp., arXiv: 1005.2655 | DOI | MR

[23] B. Chen, S.-M. Fei, G.-L. Long, “Sum uncertainty relations based on Wigner–Yanase skew information”, Quantum Inf. Process., 15:6 (2016), 2639–2648, arXiv: 1606.01533 | DOI | MR

[24] B. Yadin, V. Vedral, “General framework for quantum macroscopicity in terms of coherence”, Phys. Rev. A, 93:2 (2016), 022122, 7 pp., arXiv: 1505.03792 | DOI

[25] S. Luo, Q. Zhang, “Informational distance on quantum-state space”, Phys. Rev. A, 69:3 (2004), 032106, 8 pp. | DOI | MR

[26] Sh. L. Lo, “Ob invariantnoi informatsii Bruknera–Zailingera”, TMF, 151:2 (2007), 302–310 | DOI | DOI | MR | Zbl

[27] G. Gour, R. W. Spekkens, “The resource theory of quantum reference frames: manipulations and monotones”, New J. Phys., 10:3 (2008), 033023, 64 pp. | DOI

[28] G. Gour, I. Marvian, R. W. Spekkens, “Measuring the quality of a quantum reference frame: the relative entropy of frameness”, Phys. Rev. A, 80:1 (2009), 012307, 11 pp. | DOI

[29] I. Marvian, R. W. Spekkens, “Extending Noether's theorem by quantifying the asymmetry of quantum states”, Nature Commun., 5 (2014), 3821, 8 pp., arXiv: 1404.3236 | DOI

[30] I. Marvian, R. W. Spekkens, P. Zanardi, “Quantum speed limits, coherence, and asymmetry”, Phys. Rev. A, 93:5 (2016), 052331, 12 pp., arXiv: 1510.06474 | DOI

[31] M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli, N. Johnston, C. Adesso, “Robustness of asymmetry and coherence of quantum states”, Phys. Rev. A, 93:4 (2016), 042107, 13 pp., arXiv: 1601.03782 | DOI

[32] Y.-N. Fang, G.-H. Dong, D.-L. Zhou, C.-P. Sun, “Quantification of symmetry”, Commun. Theor. Phys., 65:4 (2016), 423–433, arXiv: 1601.03571 | DOI | MR

[33] Y. Yao, G. H. Dong, X. Xiao, C. P. Sun, “Frobenius-norm-based measures of quantum coherence and asymmetry”, Sci. Rep., 6 (2016), 32010, 12 pp., arXiv: 1605.00789 | DOI

[34] G.-H. Dong, Y.-N. Fang, C.-P. Sun, “Quantifying spontaneously symmetry breaking of quantum many-body systems”, Commun. Theor. Phys., 68:4 (2017), 405–411, arXiv: 1609.04225 | DOI | MR

[35] K. Bu, N. Anand, U. Singh, “Asymmetry and coherence weight of quantum states”, Phys. Rev. A, 97:3 (2018), 032342, 10 pp., arXiv: 1708.05010 | DOI