Skew information revisited: Its variants and a~comparison of them
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 116-125
Voir la notice de l'article provenant de la source Math-Net.Ru
Skew information was introduced by Wigner and Yanase in the context of quantum measurements. It was later recognized that skew information in addition to its original significance as a measure of the information content of states admits several interpretations of a more physical and information theory nature. This quantity has now found many applications in quantum information. An intriguing and subtle feature of skew information is the involvement of the square root of quantum states (density operators). Comparing skew information with some of its natural modifications reveals mathematical and also physical reasons for using the square root. We further use skew information to quantify the asymmetry of quantum states with respect to group representations.
Keywords:
skew information, square root, convexity, quantum coherence, variance.
@article{TMF_2020_202_1_a8,
author = {Shunlong Luo and Yuan Sun},
title = {Skew information revisited: {Its} variants and a~comparison of them},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {116--125},
publisher = {mathdoc},
volume = {202},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a8/}
}
TY - JOUR AU - Shunlong Luo AU - Yuan Sun TI - Skew information revisited: Its variants and a~comparison of them JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 116 EP - 125 VL - 202 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a8/ LA - ru ID - TMF_2020_202_1_a8 ER -
Shunlong Luo; Yuan Sun. Skew information revisited: Its variants and a~comparison of them. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 116-125. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a8/