@article{TMF_2020_202_1_a8,
author = {Shunlong Luo and Yuan Sun},
title = {Skew information revisited: {Its} variants and a~comparison of them},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {116--125},
year = {2020},
volume = {202},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a8/}
}
Shunlong Luo; Yuan Sun. Skew information revisited: Its variants and a comparison of them. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 116-125. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a8/
[1] E. P. Wigner, M. M. Yanase, “Information contents of distributions”, Proc. Nat. Acad. Sci. USA, 49:6 (1963), 910–918 | DOI | MR
[2] E. H. Lieb, M. B. Ruskai, “A fundamental property of quantum-mechanical entropy”, Phys. Rev. Lett., 30:10 (1973), 434–436 | DOI | MR
[3] E. H. Lieb, “Convex trace functions and the Wigner–Yanase–Dyson conjecture”, Adv. Math., 11:3 (1973), 267–288 | DOI | MR
[4] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR
[5] Sh. L. Luo, “Kvantovaya i klassicheskaya neopredelennosti”, TMF, 143:2 (2005), 231–240 | DOI | DOI | MR | Zbl
[6] S. Luo, “Heisenberg uncertainty relation for mixed states”, Phys. Rev. A, 72:4 (2005), 042110, 3 pp. | DOI
[7] S. Luo, “Quantum uncertainty of mixed states based on skew information”, Phys. Rev. A, 73:2 (2006), 022324 | DOI | MR
[8] S. Luo, Y. Sun, “Quantum coherence versus quantum uncertainty”, Phys. Rev. A, 96:2 (2017), 022130, 5 pp. | DOI | MR
[9] S. Luo, S. Fu, C. H. Oh, “Quantifying correlations via the Wigner–Yanase skew information”, Phys. Rev. A, 85:3 (2012), 032117, 7 pp. | DOI
[10] L. Li, Q.-W. Wang, S.-Q. Shen, M. Li, “Measurement-induced nonlocality based on Wigner–Yanase skew information”, Europhys. Lett., 114:1 (2016), 10007 | DOI
[11] Y. Sun, Y. Mao, S. Luo, “From quantum coherence to quantum correlations”, Europhys. Lett., 118:6 (2017), 60007, 7 pp. | DOI
[12] D. Girolami, “Observable measure of quantum coherence in finite dimensional systems”, Phys. Rev. Lett., 113:17 (2014), 170401, 5 pp., arXiv: 1403.2446 | DOI
[13] C. Yu, “Quantum coherence via skew information and its polygamy”, Phys. Rev. A, 95:4 (2017), 042337, 12 pp., arXiv: 1704.04871 | DOI
[14] S. Luo, Y. Sun, “Partial coherence with application to the monotonicity problem of coherence involving skew information”, Phys. Rev. A, 96:2 (2017), 022136, 5 pp. | DOI
[15] S. Luo, Y. Sun, “Coherence and complementarity in state-channel interaction”, Phys. Rev. A, 98:1 (2018), 012113, 8 pp. | DOI
[16] G. Karpat, B. Cakmak, F. F. Fanchini, “Quantum coherence and uncertainty in the anisotropic XY chain”, Phys. Rev. B, 90:10 (2014), 104431, 7 pp., arXiv: 1404.6427 | DOI
[17] A. L. Malvezzi, G. Karpat, B. Çakmak, F. F. Fanchini, T. Debarba, R. O. Vianna, “Quantum correlations and coherence in spin-1 Heisenberg chains”, Phys. Rev. B, 93:18 (2016), 184428, 8 pp., arXiv: 1602.03731 | DOI
[18] Y.-C. Li, H.-Q. Lin, “Quantum coherence and quantum phase transitions”, Sci. Rep., 6 (2016), 26365, 8 pp. | DOI
[19] S. Lei, P. Tong, “Wigner–Yanase skew information and quantum phase transition in one-dimensional quantum spin-$1/2$ chains”, Quantum Inf. Process., 15:4 (2016), 1811–1825 | DOI | MR
[20] L. Qiu, D. Quan, F. Pan, Z. Liu, “Skew information in the XY model with staggered Dzyaloshinskii–Moriya interaction”, Phys. B, 514 (2017), 13–18 | DOI
[21] K. Yanagi, S. Furuichi, K. Kuriyama, “A generalized skew information and uncertainty relation”, IEEE Trans. Inform. Theory, 51:12 (2005), 4401–4404 | DOI | MR
[22] S. Furuichi, “Schrödinger uncertainty relation with Wigner–Yanase skew information”, Phys. Rev. A, 82:3 (2010), 034101, 3 pp., arXiv: 1005.2655 | DOI | MR
[23] B. Chen, S.-M. Fei, G.-L. Long, “Sum uncertainty relations based on Wigner–Yanase skew information”, Quantum Inf. Process., 15:6 (2016), 2639–2648, arXiv: 1606.01533 | DOI | MR
[24] B. Yadin, V. Vedral, “General framework for quantum macroscopicity in terms of coherence”, Phys. Rev. A, 93:2 (2016), 022122, 7 pp., arXiv: 1505.03792 | DOI
[25] S. Luo, Q. Zhang, “Informational distance on quantum-state space”, Phys. Rev. A, 69:3 (2004), 032106, 8 pp. | DOI | MR
[26] Sh. L. Lo, “Ob invariantnoi informatsii Bruknera–Zailingera”, TMF, 151:2 (2007), 302–310 | DOI | DOI | MR | Zbl
[27] G. Gour, R. W. Spekkens, “The resource theory of quantum reference frames: manipulations and monotones”, New J. Phys., 10:3 (2008), 033023, 64 pp. | DOI
[28] G. Gour, I. Marvian, R. W. Spekkens, “Measuring the quality of a quantum reference frame: the relative entropy of frameness”, Phys. Rev. A, 80:1 (2009), 012307, 11 pp. | DOI
[29] I. Marvian, R. W. Spekkens, “Extending Noether's theorem by quantifying the asymmetry of quantum states”, Nature Commun., 5 (2014), 3821, 8 pp., arXiv: 1404.3236 | DOI
[30] I. Marvian, R. W. Spekkens, P. Zanardi, “Quantum speed limits, coherence, and asymmetry”, Phys. Rev. A, 93:5 (2016), 052331, 12 pp., arXiv: 1510.06474 | DOI
[31] M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli, N. Johnston, C. Adesso, “Robustness of asymmetry and coherence of quantum states”, Phys. Rev. A, 93:4 (2016), 042107, 13 pp., arXiv: 1601.03782 | DOI
[32] Y.-N. Fang, G.-H. Dong, D.-L. Zhou, C.-P. Sun, “Quantification of symmetry”, Commun. Theor. Phys., 65:4 (2016), 423–433, arXiv: 1601.03571 | DOI | MR
[33] Y. Yao, G. H. Dong, X. Xiao, C. P. Sun, “Frobenius-norm-based measures of quantum coherence and asymmetry”, Sci. Rep., 6 (2016), 32010, 12 pp., arXiv: 1605.00789 | DOI
[34] G.-H. Dong, Y.-N. Fang, C.-P. Sun, “Quantifying spontaneously symmetry breaking of quantum many-body systems”, Commun. Theor. Phys., 68:4 (2017), 405–411, arXiv: 1609.04225 | DOI | MR
[35] K. Bu, N. Anand, U. Singh, “Asymmetry and coherence weight of quantum states”, Phys. Rev. A, 97:3 (2018), 032342, 10 pp., arXiv: 1708.05010 | DOI