Inhomogeneous electron density in the static field of nuclei
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 98-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the thermodynamic potential of a Coulomb system of electrons and nuclei in the adiabatic approximation for the nuclei subsystem. In this approximation, the indirect interaction of nuclei is completely determined by the inhomogeneous density of the electron subsystem in the static field of nuclei. We obtain a decomposition of the inhomogeneous electron density as a sum of “one-center,” “two-center,” etc., group functions of electrons. Based on this, we consider the atomic partition function and the quasineutrality condition in a dilute atomic plasma.
Mots-clés : Coulomb system
Keywords: thermodynamic potential, inhomogeneous electron density, group function.
@article{TMF_2020_202_1_a7,
     author = {V. B. Bobrov},
     title = {Inhomogeneous electron density in the~static field of nuclei},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {98--115},
     year = {2020},
     volume = {202},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a7/}
}
TY  - JOUR
AU  - V. B. Bobrov
TI  - Inhomogeneous electron density in the static field of nuclei
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 98
EP  - 115
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a7/
LA  - ru
ID  - TMF_2020_202_1_a7
ER  - 
%0 Journal Article
%A V. B. Bobrov
%T Inhomogeneous electron density in the static field of nuclei
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 98-115
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a7/
%G ru
%F TMF_2020_202_1_a7
V. B. Bobrov. Inhomogeneous electron density in the static field of nuclei. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 98-115. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a7/

[1] V. Ebeling, V. Kreft, D. Kremp, Teoriya svyazannykh sostoyanii i ionizatsionnogo ravnovesiya v plazme i tverdom tele, Mir, M., 1979

[2] A. B. Kudryavtsev, R. F. Jameson, W. Linert, The Law of Mass Action, Springer, Berlin, 2001

[3] V. E. Fortov, A. G. Khrapak, I. T. Yakubov, Fizika neidealnoi plazmy, Fizmatlit, M., 2010

[4] V.-D. Kreft, D. Kremp, V. Ebeling, G. Repke, Kvantovaya statistika sistem zaryazhennykh chastits, Mir, M., 1988

[5] E. H. Lieb, R. Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge Univ. Press, New York, 2010 | MR

[6] V. K. Gryaznov, I. L. Iosilevskiy, V. E. Fortov, A. N. Starostin, V. K. Roerich, V. A. Baturin, S. V. Ayukov, “SAHA-S thermodynamic model of solar plasma”, Contrib. Plasma Phys., 53:4–5 (2013), 392–396 | DOI

[7] R. Redmer, G. Röpke, “Progress in the theory of dense strongly coupled plasmas”, Contrib. Plasma Phys., 50:10 (2010), 970–985 | DOI

[8] V. B. Bobrov, S. A. Triger, “Sootnosheniya Kramersa–Kroniga dlya dielektricheskoi pronitsaemosti, “istinnyi” radius ekranirovaniya i kriticheskaya tochka kulonovskoi sistemy”, TVT, 49:4 (2011), 513–523 | DOI

[9] A. N. Starostin, V. K. Rerikh, “Skhodyascheesya uravnenie sostoyaniya slaboneidealnoi plazmy vodoroda bez tainstv”, ZhETF, 127:1 (2005), 186–219 | DOI

[10] A. Alasteuey, V. Ballenegger, F. Cornu, Ph. A. Martin, “Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory”, J. Stat. Phys., 130:6 (2008), 1119–1176 | DOI | MR

[11] A. Alasteuey, V. Ballenegger, “Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions”, Contrib. Plasma Phys., 50:1 (2010), 46–53 | DOI

[12] Y. A. Omarbakieva, C. Fortman, T. S. Ramasanov, G. Röpke, “Cluster virial expansion for the equation of state of partially ionized hydrogen plasma”, Phys. Rev. E., 82:2 (2010), 026407, 14 pp. | DOI

[13] A. Alasteuey, V. Ballenegger, “Atomic ionization and molecular dissociation in a hydrogen gas within the physical picture”, Contrib. Plasma Phys., 52:1 (2012), 95–99 | DOI

[14] V. B. Bobrov, S. A. Trigger, W. Ebeling, “Identity of electrons and ionization equilibrium”, Europhys. Lett., 95:2 (2011), 25001, 4 pp., arXiv: 1012.2067 | DOI

[15] J. M. McMahon, M. A. Morales, C. Pierleoni, D. M. Ceperley, “The properties of hydrogen and helium under extreme conditions”, Rev. Modern Phys., 44:4 (2012), 1607–1653 | DOI

[16] M. A. Morales, J. M. McMahon, C. Pierleoni, D. M. Ceperley, “Nuclear quantum effects and nonlocal exchange-correlation functionals applied to liquid hydrogen at high pressure”, Phys. Rev. Lett., 110:6 (2013), 065702, 6 pp. | DOI

[17] C. A. Jimenez-Hoyos, T. M. Henderson, T. Tsuchimochi, G. E. Scuseria, “Projected Hartree–Fock theory”, J. Chem. Phys., 136:16 (2012), 164109, 10 pp. | DOI

[18] P. Hohenberg, W. Kohn, “Inhomogeneous electron gas”, Phys. Rev., 136:3B (1964), B864–B871 | DOI

[19] R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press, New York, 1989

[20] N. D. Mermin, “Thermal properties of the inhomogeneous electron gas”, Phys. Rev., 137:5A (1965), A1441–A1443 | DOI

[21] M. W. C. Dharma-wardana, F. Perrot, “Density-functional theory of hydrogen plasmas”, Phys. Rev. A, 26:4 (1982), 2096–2104 | DOI

[22] M. W. C. Dharma-wardana, “Quantum corrections and bound-state effects in the energy relaxation of hot dense hydrogen”, Phys. Rev. Lett., 101:3 (2008), 035002, 4 pp. | DOI

[23] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C. A. Marianetti, “Electronic structure calculations with dynamical mean-field theory”, Rev. Modern Phys., 78:3 (2006), 865–951, arXiv: cond-mat/0511085 | DOI

[24] W. Nelson, P. Bokes, P. Rinke, R. W. Godby, “Self-interaction in Green's-function theory of the hydrogen atom”, Phys. Rev. A, 75:3 (2007), 032505, 10 pp. | DOI

[25] K. Burke, “Perspective on density functional theory”, J. Chem. Phys., 136:15 (2012), 150901, 12 pp., arXiv: 1201.3679 | DOI

[26] V. B. Bobrov, S. A. Trigger, “Impossibility of the existence of the universal density functional”, Europhys. Lett., 94:3 (2011), 33001, 5 pp., arXiv: 1012.3241 | DOI

[27] V. B. Bobrov, S. A. Trigger, Yu. P. Vlasov, “External field as the functional of inhomogeneous density and the density matrix functional approach”, Europhys. Lett., 98:5 (2012), 53002, 4 pp. | DOI

[28] V. B. Bobrov, S. A. Trigger, “The problem of the universal density functional and the density matrix functional theory”, ZhETF, 143:4 (2013), 729–785 | DOI | DOI

[29] V. B. Bobrov, “From the density functional theory to the single-particle green function”, Indian J. Phys., 90:8 (2016), 853–859 | DOI

[30] V. B. Bobrov, S. A. Triger, “K teorii neodnorodnogo elektronnogo gaza”, ZhTF, 88:8 (2018), 1128–1136 | DOI | DOI

[31] K. Pernal, “Effective potential for natural spin orbitals”, Phys. Rev. Lett., 94:23 (2005), 233002, 4 pp. | DOI

[32] K. Pernal, “Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas”, Phys. Rev. Lett. A, 81:5 (2010), 052511, 8 pp. | DOI

[33] N. N. Lathiotakis, N. I. Gidopoulos, N. Helbig, “Size consistency of explicit functionals of the natural orbitals in reduced density matrix functional theory”, J. Chem. Phys, 132:8 (2010), 084105, 7 pp. | DOI

[34] V. B. Bobrov, S. A. Trigger, Yu. P. Vlasov, “Density functional, density matrix functional, and the virial theorem”, Phys. Rev. A, 83:3 (2011), 034501, 3 pp. | DOI

[35] D. A. Kirzhnits, Polevye metody teorii mnogikh chastits, Gosatomizdat, M., 1963 | MR

[36] V. B. Bobrov, S. A. Trigger, “Finite size atom: the new quasiparticle in the self-consistent Hartree–Fock approximation”, Phys. Lett. A, 374:4 (2010), 4188–4192 | DOI

[37] V. B. Bobrov, “O statisticheskoi teorii razrezhennogo gaza v kulonovskoi modeli veschestva. Adiabaticheskoe priblizhenie i iskhodnye atomy”, TMF, 178:3 (2014), 433–448 | DOI | DOI | MR | Zbl

[38] V. B. Bobrov, S. A. Triger, O. F. Petrov, “O sootnoshenii mezhdu mikrokanonicheskim i kanonicheskim raspredeleniyami Gibbsa”, TVT, 55:1 (2017), 154–157 | DOI | DOI

[39] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR

[40] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. V, Statisticheskaya fizika. Chast 1, Nauka, M., 1976 | MR

[41] S. Ichimaru, “Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids”, Rev. Modern Phys., 54:4 (1982), 1017–1059 | DOI

[42] G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid, Cambridge Univ. Press, Cambridge, 2005

[43] A. I. Akhiezer, S. V. Peletminskii, Metody statisticheskoi fiziki, Nauka, M., 1977 | MR

[44] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, GIFML, M., 1962 | MR | MR | Zbl

[45] K. Huang, Statistical Mechanics, Wiley, New York, 1987 | MR

[46] G. E. Uhlenbeck, E. Beth, “The quantum theory of the non-ideal gas I. Deviations from the classical theory”, Physica, 3:8 (1936), 729–745 | DOI

[47] E. Beth, G. E. Uhlenbeck, “The quantum theory of the non-ideal gas. II. Behaviour at low temperatures”, Physica, 4:10 (1937), 915–924 | DOI

[48] M. Schmidt, G. Röpke, H. Schulz, “Generalized Beth–Uhlenbeck approach for hot nuclear matter”, Ann. Phys., 202:1 (1990), 57–99 | DOI

[49] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR

[50] L. P. Kudrin, Statisticheskaya fizika plazmy, Atomizdat, M., 1974

[51] R. Feynman, N. Metropolis, E. Teller, “Equations of state of elements based on the generalized Fermi–Thomas theory”, Phys. Rev., 75:10 (1949), 1561–1573 | DOI

[52] C. E. Starrett, D. Saumon, “Fully variational average atom model with ion-ion correlations”, Phys. Rev. E, 85:2 (2012), 026403, 10 pp. | DOI

[53] M. S. Murillo, J. Weisheit, S. B. Hansen, M. W. C. Dharma-wardana, “Partial ionization in dense plasmas: Comparisons among average-atom density functional models”, Phys. Rev. E, 87:6 (2013), 063113, 19 pp. | DOI

[54] C. E. Starrett, “A Green's function quantum average atom model”, High Energy Density Phys., 16 (2015), 18–22 | DOI

[55] J. M. Ziman, Principles of the Theory of Solids, Cambridge Univ. Press, Cambridge, 1972 | MR