Keywords: thermodynamic potential, inhomogeneous electron density, group function.
@article{TMF_2020_202_1_a7,
author = {V. B. Bobrov},
title = {Inhomogeneous electron density in the~static field of nuclei},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {98--115},
year = {2020},
volume = {202},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a7/}
}
V. B. Bobrov. Inhomogeneous electron density in the static field of nuclei. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 98-115. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a7/
[1] V. Ebeling, V. Kreft, D. Kremp, Teoriya svyazannykh sostoyanii i ionizatsionnogo ravnovesiya v plazme i tverdom tele, Mir, M., 1979
[2] A. B. Kudryavtsev, R. F. Jameson, W. Linert, The Law of Mass Action, Springer, Berlin, 2001
[3] V. E. Fortov, A. G. Khrapak, I. T. Yakubov, Fizika neidealnoi plazmy, Fizmatlit, M., 2010
[4] V.-D. Kreft, D. Kremp, V. Ebeling, G. Repke, Kvantovaya statistika sistem zaryazhennykh chastits, Mir, M., 1988
[5] E. H. Lieb, R. Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge Univ. Press, New York, 2010 | MR
[6] V. K. Gryaznov, I. L. Iosilevskiy, V. E. Fortov, A. N. Starostin, V. K. Roerich, V. A. Baturin, S. V. Ayukov, “SAHA-S thermodynamic model of solar plasma”, Contrib. Plasma Phys., 53:4–5 (2013), 392–396 | DOI
[7] R. Redmer, G. Röpke, “Progress in the theory of dense strongly coupled plasmas”, Contrib. Plasma Phys., 50:10 (2010), 970–985 | DOI
[8] V. B. Bobrov, S. A. Triger, “Sootnosheniya Kramersa–Kroniga dlya dielektricheskoi pronitsaemosti, “istinnyi” radius ekranirovaniya i kriticheskaya tochka kulonovskoi sistemy”, TVT, 49:4 (2011), 513–523 | DOI
[9] A. N. Starostin, V. K. Rerikh, “Skhodyascheesya uravnenie sostoyaniya slaboneidealnoi plazmy vodoroda bez tainstv”, ZhETF, 127:1 (2005), 186–219 | DOI
[10] A. Alasteuey, V. Ballenegger, F. Cornu, Ph. A. Martin, “Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory”, J. Stat. Phys., 130:6 (2008), 1119–1176 | DOI | MR
[11] A. Alasteuey, V. Ballenegger, “Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions”, Contrib. Plasma Phys., 50:1 (2010), 46–53 | DOI
[12] Y. A. Omarbakieva, C. Fortman, T. S. Ramasanov, G. Röpke, “Cluster virial expansion for the equation of state of partially ionized hydrogen plasma”, Phys. Rev. E., 82:2 (2010), 026407, 14 pp. | DOI
[13] A. Alasteuey, V. Ballenegger, “Atomic ionization and molecular dissociation in a hydrogen gas within the physical picture”, Contrib. Plasma Phys., 52:1 (2012), 95–99 | DOI
[14] V. B. Bobrov, S. A. Trigger, W. Ebeling, “Identity of electrons and ionization equilibrium”, Europhys. Lett., 95:2 (2011), 25001, 4 pp., arXiv: 1012.2067 | DOI
[15] J. M. McMahon, M. A. Morales, C. Pierleoni, D. M. Ceperley, “The properties of hydrogen and helium under extreme conditions”, Rev. Modern Phys., 44:4 (2012), 1607–1653 | DOI
[16] M. A. Morales, J. M. McMahon, C. Pierleoni, D. M. Ceperley, “Nuclear quantum effects and nonlocal exchange-correlation functionals applied to liquid hydrogen at high pressure”, Phys. Rev. Lett., 110:6 (2013), 065702, 6 pp. | DOI
[17] C. A. Jimenez-Hoyos, T. M. Henderson, T. Tsuchimochi, G. E. Scuseria, “Projected Hartree–Fock theory”, J. Chem. Phys., 136:16 (2012), 164109, 10 pp. | DOI
[18] P. Hohenberg, W. Kohn, “Inhomogeneous electron gas”, Phys. Rev., 136:3B (1964), B864–B871 | DOI
[19] R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press, New York, 1989
[20] N. D. Mermin, “Thermal properties of the inhomogeneous electron gas”, Phys. Rev., 137:5A (1965), A1441–A1443 | DOI
[21] M. W. C. Dharma-wardana, F. Perrot, “Density-functional theory of hydrogen plasmas”, Phys. Rev. A, 26:4 (1982), 2096–2104 | DOI
[22] M. W. C. Dharma-wardana, “Quantum corrections and bound-state effects in the energy relaxation of hot dense hydrogen”, Phys. Rev. Lett., 101:3 (2008), 035002, 4 pp. | DOI
[23] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C. A. Marianetti, “Electronic structure calculations with dynamical mean-field theory”, Rev. Modern Phys., 78:3 (2006), 865–951, arXiv: cond-mat/0511085 | DOI
[24] W. Nelson, P. Bokes, P. Rinke, R. W. Godby, “Self-interaction in Green's-function theory of the hydrogen atom”, Phys. Rev. A, 75:3 (2007), 032505, 10 pp. | DOI
[25] K. Burke, “Perspective on density functional theory”, J. Chem. Phys., 136:15 (2012), 150901, 12 pp., arXiv: 1201.3679 | DOI
[26] V. B. Bobrov, S. A. Trigger, “Impossibility of the existence of the universal density functional”, Europhys. Lett., 94:3 (2011), 33001, 5 pp., arXiv: 1012.3241 | DOI
[27] V. B. Bobrov, S. A. Trigger, Yu. P. Vlasov, “External field as the functional of inhomogeneous density and the density matrix functional approach”, Europhys. Lett., 98:5 (2012), 53002, 4 pp. | DOI
[28] V. B. Bobrov, S. A. Trigger, “The problem of the universal density functional and the density matrix functional theory”, ZhETF, 143:4 (2013), 729–785 | DOI | DOI
[29] V. B. Bobrov, “From the density functional theory to the single-particle green function”, Indian J. Phys., 90:8 (2016), 853–859 | DOI
[30] V. B. Bobrov, S. A. Triger, “K teorii neodnorodnogo elektronnogo gaza”, ZhTF, 88:8 (2018), 1128–1136 | DOI | DOI
[31] K. Pernal, “Effective potential for natural spin orbitals”, Phys. Rev. Lett., 94:23 (2005), 233002, 4 pp. | DOI
[32] K. Pernal, “Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas”, Phys. Rev. Lett. A, 81:5 (2010), 052511, 8 pp. | DOI
[33] N. N. Lathiotakis, N. I. Gidopoulos, N. Helbig, “Size consistency of explicit functionals of the natural orbitals in reduced density matrix functional theory”, J. Chem. Phys, 132:8 (2010), 084105, 7 pp. | DOI
[34] V. B. Bobrov, S. A. Trigger, Yu. P. Vlasov, “Density functional, density matrix functional, and the virial theorem”, Phys. Rev. A, 83:3 (2011), 034501, 3 pp. | DOI
[35] D. A. Kirzhnits, Polevye metody teorii mnogikh chastits, Gosatomizdat, M., 1963 | MR
[36] V. B. Bobrov, S. A. Trigger, “Finite size atom: the new quasiparticle in the self-consistent Hartree–Fock approximation”, Phys. Lett. A, 374:4 (2010), 4188–4192 | DOI
[37] V. B. Bobrov, “O statisticheskoi teorii razrezhennogo gaza v kulonovskoi modeli veschestva. Adiabaticheskoe priblizhenie i iskhodnye atomy”, TMF, 178:3 (2014), 433–448 | DOI | DOI | MR | Zbl
[38] V. B. Bobrov, S. A. Triger, O. F. Petrov, “O sootnoshenii mezhdu mikrokanonicheskim i kanonicheskim raspredeleniyami Gibbsa”, TVT, 55:1 (2017), 154–157 | DOI | DOI
[39] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR
[40] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. V, Statisticheskaya fizika. Chast 1, Nauka, M., 1976 | MR
[41] S. Ichimaru, “Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids”, Rev. Modern Phys., 54:4 (1982), 1017–1059 | DOI
[42] G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid, Cambridge Univ. Press, Cambridge, 2005
[43] A. I. Akhiezer, S. V. Peletminskii, Metody statisticheskoi fiziki, Nauka, M., 1977 | MR
[44] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, GIFML, M., 1962 | MR | MR | Zbl
[45] K. Huang, Statistical Mechanics, Wiley, New York, 1987 | MR
[46] G. E. Uhlenbeck, E. Beth, “The quantum theory of the non-ideal gas I. Deviations from the classical theory”, Physica, 3:8 (1936), 729–745 | DOI
[47] E. Beth, G. E. Uhlenbeck, “The quantum theory of the non-ideal gas. II. Behaviour at low temperatures”, Physica, 4:10 (1937), 915–924 | DOI
[48] M. Schmidt, G. Röpke, H. Schulz, “Generalized Beth–Uhlenbeck approach for hot nuclear matter”, Ann. Phys., 202:1 (1990), 57–99 | DOI
[49] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR
[50] L. P. Kudrin, Statisticheskaya fizika plazmy, Atomizdat, M., 1974
[51] R. Feynman, N. Metropolis, E. Teller, “Equations of state of elements based on the generalized Fermi–Thomas theory”, Phys. Rev., 75:10 (1949), 1561–1573 | DOI
[52] C. E. Starrett, D. Saumon, “Fully variational average atom model with ion-ion correlations”, Phys. Rev. E, 85:2 (2012), 026403, 10 pp. | DOI
[53] M. S. Murillo, J. Weisheit, S. B. Hansen, M. W. C. Dharma-wardana, “Partial ionization in dense plasmas: Comparisons among average-atom density functional models”, Phys. Rev. E, 87:6 (2013), 063113, 19 pp. | DOI
[54] C. E. Starrett, “A Green's function quantum average atom model”, High Energy Density Phys., 16 (2015), 18–22 | DOI
[55] J. M. Ziman, Principles of the Theory of Solids, Cambridge Univ. Press, Cambridge, 1972 | MR