The role of Majorana-like bound states in the Andreev reflection and the Josephson effect in the case of a topological insulator
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 81-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analytically investigate Andreev bound states with a near-zero energy in a one-dimensional “normal metal–superconductor” structure formed at the boundary of a two-dimensional topological insulator with superconductivity induced by the proximity effect in the presence of a Zeeman field. We assume that the system is open, which leads to a finite lifetime of bound states. We prove that in the topological and trivial phases, there are two Andreev bound states that are stable inside the superconductor, and their superpositions form two Majorana-like bound states. But the ideal Andreev reflection in the topological phase is caused not by Majorana states but by the presence of two Andreev bound states with opposite spins in the superconductor (one of them plays the role of a Majorana state). In the “superconductor–normal metal–superconductor” structure at the topological insulator boundary for a small superconducting gap, we study the Josephson effect using a rigorous approach. In particular, we find an analytic expression for the current–phase relation and also describe wave functions in the case of zero current and the maximum Josephson superconducting current. At the maximum current in the absence of a potential, Majorana bound states arise. It turns out that under certain conditions, bound states with a finite lifetime act as current carriers.
Keywords: Bogoliubov–de Gennes Hamiltonian, spectrum, scattering problem, transmission probability, Majorana bound state, Andreev bound state, Josephson effect.
@article{TMF_2020_202_1_a6,
     author = {T. S. Tinyukova and Yu. P. Chuburin},
     title = {The~role of {Majorana-like} bound states in {the~Andreev} reflection and {the~Josephson} effect in the~case of a~topological insulator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {81--97},
     year = {2020},
     volume = {202},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a6/}
}
TY  - JOUR
AU  - T. S. Tinyukova
AU  - Yu. P. Chuburin
TI  - The role of Majorana-like bound states in the Andreev reflection and the Josephson effect in the case of a topological insulator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 81
EP  - 97
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a6/
LA  - ru
ID  - TMF_2020_202_1_a6
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%A Yu. P. Chuburin
%T The role of Majorana-like bound states in the Andreev reflection and the Josephson effect in the case of a topological insulator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 81-97
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a6/
%G ru
%F TMF_2020_202_1_a6
T. S. Tinyukova; Yu. P. Chuburin. The role of Majorana-like bound states in the Andreev reflection and the Josephson effect in the case of a topological insulator. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 81-97. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a6/

[1] S. R. Elliot, M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics”, Rev. Modern Phys., 87:1 (2015), 137–163, arXiv: 1403.4976 | DOI | MR

[2] M. Sato, S. Fujimoto, “Majorana fermions and topology in superconductors”, J. Phys. Soc. Japan, 85:7 (2016), 072001, 32 pp., arXiv: 1601.02726 | DOI

[3] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems”, Rep. Progr. Phys., 75:7 (2012), 076501, 36 pp., arXiv: 1202.1293 | DOI

[4] K. Sengupta, I. Zutic, H.-J. Kwon, V. M. Yakovenko, S. Das Sarma, “Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors”, Phys. Rev. B, 63:14 (2001), 144531, 6 pp., arXiv: cond-mat/0010206 | DOI

[5] F. Setiawan, P. M. R. Brydon, J. D. Sau, S. Das Sarma, “Conductance spectroscopy of topological superconductor wire junctions”, Phys. Rev. B, 91:21 (2015), 214513, 9 pp., arXiv: 1503.06801 | DOI

[6] C.-X. Liu, J. D. Sau, T. D. Stanescu, S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: trivial versus topological zero-bias conductance peaks”, Phys. Rev. B, 96:7 (2017), 075161, 29 pp., arXiv: 1705.02035 | DOI

[7] C. Moore, C. Zeng, T. D. Stanescu, S. Tewari, Quantized zero bias conductance plateau in semiconductor-superconductor heterostructures without non-Abelian Majorana zero modes, arXiv: 1804.03164

[8] A. Vuik, B. Nijholt, A. R. Akhmerov, M. Wimmer, Reproducing topological properties with quasi-Majorana states, arXiv: 1806.02801

[9] J. Cayao, P. San-Jose, A. M. Black-Schaffer, R. Aguado, E. Prada, “Majorana splitting from critical currents in Josephson junctions”, Phys. Rev. B, 96:20 (2017), 205425, 9 pp., arXiv: 1707.05117 | DOI

[10] C.-K. Chiu, S. Das Sarma, “Fractional Josephson effect with and without Majorana zero modes”, Phys. Rev. B, 99:3 (2019), 035312, 13 pp. | DOI

[11] Y. Peng, F. Pientka, E. Berg, Y. Oreg, F. von Oppen, “Signatures of topological Josephson junctions”, Phys. Rev. B, 94:8 (2016), 085409, 22 pp., arXiv: 1604.04287 | DOI

[12] P. San-Jose, J. Cayao, E. Prada, R. Aguado, “Majorana bound states from exceptional points in nontopological superconductors”, Sci. Rep., 6 (2016), 21427, 13 pp. | DOI

[13] J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, “Interplay between superconductivity and ferromagnetism on a topological insulator”, Phys. Rev. B, 81:18 (2010), 184525, 11 pp., arXiv: 1003.4754 | DOI

[14] C. T. Olund, E. Zhao, “Current-phase relation for Josephson effect through helical metal”, Phys. Rev. B, 86:21 (2012), 214515, 7 pp., arXiv: 1207.7288 | DOI

[15] G. E. Blonder, M. Tinkham, T. M. Klapwijk, “Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion”, Phys. Rev. B, 25:7 (1982), 4515–4532 | DOI

[16] S. Datta, Kvantovyi transport ot atoma k tranzistoru, In-t kompyuternykh issledovanii, RKhD, M.–Izhevsk, 2009

[17] J. Viljas, Molecular electronics, a brief introduction (Lecture notes for a course on nanoelectronics, fall 2009), 2013 https://www.sites.google.com/site/janneviljas/

[18] A. Kobialka, A. Ptok, Leakage of the Majorana quasiparticles in Rashba nanowire deposited on superconducting–normal substrate, arXiv: 1801.03693

[19] Yu. P. Chuburin, “Existence of Majorana bound states near impurities in the case of a small superconducting gap”, Phys. E, 89 (2017), 130–133 | DOI

[20] Yu. P. Chuburin, “Suschestvovanie maioranovskikh lokalizovannykh sostoyanii v sverkhprovodyaschei nanoprovoloke vblizi primesi”, TMF, 197:2 (2018), 279–289 | DOI | DOI | MR

[21] T. Yokoyama, “Josephson and proximity effects on the surface of a topological insulator”, Phys. Rev. B, 86:7 (2012), 075410, 6 pp., arXiv: 1206.3831 | DOI

[22] J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, “Interplay between superconductivity and ferromagnetism on a topological insulator”, Phys. Rev. B, 81:18 (2010), 184525, 11 pp., arXiv: 1003.4754 | DOI

[23] F. Crépin, B. Trauzettel, F. Dolcini, “Signatures of Majorana bound states in transport properties of hybrid structures based on helical liquids”, Phys. Rev. B, 89:20 (2014), 205115, 12 pp. | DOI

[24] S. Albeverio, F. Gestezi, R. Khëeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR