Inverse spectral problem for the Schrödinger equation with an additional linear potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 66-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the one-dimensional Schrödinger equation with an additional linear potential on the whole axis and construct a transformation operator with a condition at $-\infty$. We obtain the fundamental integral Gelfand–Levitan equation on the half-axis $(-\infty,x)$ and prove the unique solvability of this fundamental equation.
Keywords: Schrödinger equation, additional linear potential, Airy function, transformation operator, Gelfand–Levitan equation, inverse scattering problem.
@article{TMF_2020_202_1_a5,
     author = {A. Kh. Khanmamedov and M. G. Makhmudova},
     title = {Inverse spectral problem for {the~Schr\"odinger} equation with an~additional linear potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {66--80},
     year = {2020},
     volume = {202},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a5/}
}
TY  - JOUR
AU  - A. Kh. Khanmamedov
AU  - M. G. Makhmudova
TI  - Inverse spectral problem for the Schrödinger equation with an additional linear potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 66
EP  - 80
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a5/
LA  - ru
ID  - TMF_2020_202_1_a5
ER  - 
%0 Journal Article
%A A. Kh. Khanmamedov
%A M. G. Makhmudova
%T Inverse spectral problem for the Schrödinger equation with an additional linear potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 66-80
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a5/
%G ru
%F TMF_2020_202_1_a5
A. Kh. Khanmamedov; M. G. Makhmudova. Inverse spectral problem for the Schrödinger equation with an additional linear potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 66-80. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a5/

[1] F. Calogero, A. Degasperis, “Inverse spectral problem for the one-dimensional Schrödinger equation with an additional linear potential”, Lett. Nuovo Cimento, 23:4 (1978), 143–149 | DOI | MR

[2] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR

[3] Y. S. Li, “One special inverse problem of the second order differential equation on the whole real axis”, Chinese Ann. of Math., 2:2 (1981), 147–155 | MR

[4] A. P. Kachalov, Ya. V. Kurylev, “Metod operatorov preobrazovaniya v obratnoi zadache rasseyaniya. Odnomernyi shtark-effekt”, Matematicheskie voprosy teorii rasprostraneniya voln. 19, Zap. nauch. sem. LOMI, 179, 1989, 73–87 | DOI | MR | Zbl

[5] S. Graffi, E. Harrell, “Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation”, Ann. Inst. H. Poincaré Sect. A (N. S.), 36:1 (1982), 41–58 | MR

[6] A. Its, V. Sukhanov, “A Riemann–Hilbert approach to the inverse problem for the Stark operator on the line”, Inverse Problems, 32:5 (2016), 055003, 27 pp. | DOI | MR

[7] Y. Lin, M. Qian, Q. Zhang, “Inverse scattering problem for one-dimensional Schordinger operators related to the general Stark effect”, Acta Math. Appl. Sinica (English Ser.), 5:2 (1989), 116–136 | DOI | MR

[8] D. Chelkak, P. Kargaev, E. Korotyaev, “Inverse problem for harmonic oscillator perturbed by potential, characterization”, Commun. Math. Phys., 249:4 (2004), 133–196 | DOI | MR

[9] E. L. Korotyaev, “Resonances for 1D Stark operators”, J. Spectr. Theory, 7:3 (2017), 699–732 | DOI | MR

[10] I. M. Guseinov, A. Kh. Khanmamedov, A. F. Mamedova, “Obratnaya zadacha rasseyaniya dlya uravneniya Shredingera s dopolnitelnym kvadratichnym potentsialom na vsei osi”, TMF, 195:1 (2018), 54–63 | DOI | DOI

[11] S. M. Bagirova, A. Kh. Khanmamedov, “The inverse spectral problem for the perturbed harmonic oscillator on the entire axis”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:2 (2018), 285–294 | MR

[12] J. Avron, I. Herbst, “Spectral and scattering theory of Schrodinger operators related to the Stark effect”, Commun. Math. Phys., 52:3 (1977), 239–254 | DOI | MR

[13] A. M. Savchuk, A. A. Shkalikov, “Spektralnye svoistva kompleksnogo operatora Eiri na poluosi”, Funkts. analiz i ego pril., 51:1 (2017), 82–98 | DOI | DOI | MR

[14] E. L. Korotyaev, “Asymptotics of resonances for 1D Stark operators”, Lett. Math. Phys., 108:5 (2018), 1307–1322, arXiv: 1705.08072 | DOI | MR

[15] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[16] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[17] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, Chast I, IL, M., 1960 | MR | MR | Zbl

[18] N. E. Firsova, “Pryamaya i obratnaya zadacha rasseyaniya dlya odnomernogo vozmuschennogo operatora Khilla”, Matem. sb., 130(172):3(7) (1986), 349–385 | DOI | MR | Zbl

[19] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Fizmatlit, M., 1970 | MR | Zbl

[20] E. Ch. Titchmarsh, Teoriya funktsii, Nauka, M., 1980 | MR | MR | Zbl | Zbl