Inverse spectral problem for the~Schr\"odinger equation with an~additional linear potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 66-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-dimensional Schrödinger equation with an additional linear potential on the whole axis and construct a transformation operator with a condition at $-\infty$. We obtain the fundamental integral Gelfand–Levitan equation on the half-axis $(-\infty,x)$ and prove the unique solvability of this fundamental equation.
Keywords: Schrödinger equation, additional linear potential, Airy function, transformation operator, Gelfand–Levitan equation, inverse scattering problem.
@article{TMF_2020_202_1_a5,
     author = {A. Kh. Khanmamedov and M. G. Makhmudova},
     title = {Inverse spectral problem for {the~Schr\"odinger} equation with an~additional linear potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {66--80},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a5/}
}
TY  - JOUR
AU  - A. Kh. Khanmamedov
AU  - M. G. Makhmudova
TI  - Inverse spectral problem for the~Schr\"odinger equation with an~additional linear potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 66
EP  - 80
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a5/
LA  - ru
ID  - TMF_2020_202_1_a5
ER  - 
%0 Journal Article
%A A. Kh. Khanmamedov
%A M. G. Makhmudova
%T Inverse spectral problem for the~Schr\"odinger equation with an~additional linear potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 66-80
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a5/
%G ru
%F TMF_2020_202_1_a5
A. Kh. Khanmamedov; M. G. Makhmudova. Inverse spectral problem for the~Schr\"odinger equation with an~additional linear potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 66-80. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a5/