Spectrum of the Landau Hamiltonian with a periodic electric potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 47-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a class of periodic electric potentials for which the spectrum of the two-dimensional Schrödinger operator is absolutely continuous in the case of a homogeneous magnetic field $B$ with a rational flux $\eta= (2\pi)^{-1}Bv(K)$, where $v(K)$ is the area of an elementary cell $K$ in the lattice of potential periods. Using properties of functions in this class, we prove that in the space of periodic electric potentials in $L^2_{\mathrm{loc}}(\mathbb R^2)$ with a given period lattice and identified with $L^2(K)$, there exists a second-category set (in the sense of Baire) such that for any electric potential in this set and any homogeneous magnetic field with a rational flow $\eta$, the spectrum of the two-dimensional Schrödinger operator is absolutely continuous.
Keywords: two-dimensional Schrödinger operator, absolute spectrum continuity, periodic potential, homogeneous magnetic field.
@article{TMF_2020_202_1_a4,
     author = {L. I. Danilov},
     title = {Spectrum of {the~Landau} {Hamiltonian} with a~periodic electric potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {47--65},
     year = {2020},
     volume = {202},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a4/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Spectrum of the Landau Hamiltonian with a periodic electric potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 47
EP  - 65
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a4/
LA  - ru
ID  - TMF_2020_202_1_a4
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Spectrum of the Landau Hamiltonian with a periodic electric potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 47-65
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a4/
%G ru
%F TMF_2020_202_1_a4
L. I. Danilov. Spectrum of the Landau Hamiltonian with a periodic electric potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 47-65. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a4/

[1] M. Sh. Birman, T. A. Suslina, “Dvumernyi periodicheskii magnitnyi gamiltonian absolyutno nepreryven”, Algebra i analiz, 9:1 (1997), 32–48 | MR | Zbl

[2] L. I. Danilov, “O spektre dvumernogo periodicheskogo operatora Shredingera”, TMF, 134:3 (2003), 447–459 | DOI | DOI | MR | Zbl

[3] R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra dvumernogo magnitnogo periodicheskogo operatora Shredingera s polozhitelnym elektricheskim potentsialom”, Tr. S.-Peterb. matem. ob-va, 9 (2001), 199–233 | Zbl

[4] R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra dvumernogo periodicheskogo operatora Shredingera s silno podchinennym magnitnym potentsialom”, Zap. nauch. sem. POMI, 303 (2003), 279–320 | DOI | MR | Zbl

[5] L. I. Danilov, “Ob otsutstvii sobstvennykh znachenii v spektre dvumernykh periodicheskikh operatorov Diraka i Shredingera”, Izv. IMI UdGU, 2004, no. 1(29), 49–84

[6] M. Sh. Birman, T. A. Suslina, “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[7] P. Kuchment, S. Levendorskiî, “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR

[8] P. Kuchment, “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc. (N. S.), 53:3 (2016), 343–414 | DOI | MR

[9] V. A. Geiler, “Dvumernyi operator Shredingera s odnorodnym magnitnym polem i ego vozmuscheniya periodicheskimi potentsialami nulevogo radiusa”, Algebra i analiz, 3:3 (1991), 1–48 | MR | Zbl

[10] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | DOI

[11] V. A. Geiler, V. A. Margulis, I. I. Chuchaev, “O strukture spektra trekhmernykh periodicheskikh operatorov Landau”, Algebra i analiz, 8:3 (1996), 104–124 | MR | Zbl

[12] F. Klopp, “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Math. Ann., 347:3 (2010), 675–687 | DOI | MR

[13] S. P. Novikov, “Dvumernye operatory Shredingera v periodicheskikh polyakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 23 (1983), 3–32 | DOI | MR | Zbl

[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[15] P. Kuchment, Floquet Theory for Partial Differential Equations, Operator Theory: Advances and Applications, 60, Birkhäuser, Basel, 1993 | DOI | MR

[16] A. S. Lyskova, “Topologicheskie kharakteristiki spektra operatora Shredingera v magnitnom pole i slabom potentsiale”, TMF, 65:3 (1985), 368–378 | DOI | MR

[17] L. I. Danilov, “O spektre dvumernogo operatora Shredingera s odnorodnym magnitnym polem i periodicheskim elektricheskim potentsialom”, Izv. IMI UdGU, 51 (2018), 3–41 | DOI