Multiplicative renormalizability of Yang–Mills theory with the background field method in the BV formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 34-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Studying the gauge-invariant renormalizability of four-dimensional Yang–Mills theory using the background field method and the BV formalism, we derive a classical master equation homogeneous with respect to the antibracket by introducing antifield partners to the background fields and parameters. The constructed model can be renormalized by the standard method of introducing counterterms. This model does not have (exact) multiplicative renormalizability but it does have this property in the physical sector (quasimultiplicative renormalizability).
Keywords: background field method, Yang–Mills theory, renormalizability, gauge dependence
Mots-clés : BV formalism.
@article{TMF_2020_202_1_a3,
     author = {I. A. Batalin and K. Bering and P. M. Lavrov and I. V. Tyutin},
     title = {Multiplicative renormalizability of {Yang{\textendash}Mills} theory with the~background field method in {the~BV} formalism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {34--46},
     year = {2020},
     volume = {202},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a3/}
}
TY  - JOUR
AU  - I. A. Batalin
AU  - K. Bering
AU  - P. M. Lavrov
AU  - I. V. Tyutin
TI  - Multiplicative renormalizability of Yang–Mills theory with the background field method in the BV formalism
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 34
EP  - 46
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a3/
LA  - ru
ID  - TMF_2020_202_1_a3
ER  - 
%0 Journal Article
%A I. A. Batalin
%A K. Bering
%A P. M. Lavrov
%A I. V. Tyutin
%T Multiplicative renormalizability of Yang–Mills theory with the background field method in the BV formalism
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 34-46
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a3/
%G ru
%F TMF_2020_202_1_a3
I. A. Batalin; K. Bering; P. M. Lavrov; I. V. Tyutin. Multiplicative renormalizability of Yang–Mills theory with the background field method in the BV formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 34-46. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a3/

[1] C. N. Yang, R. L. Mills, “Considerations of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96:1 (1954), 191–195 | DOI | MR

[2] B. S. DeWitt, “Quantum theory of gravity. II. The manifestly covariant theory”, Phys. Rev., 162:5 (1967), 1195–1239 | DOI

[3] I. Ya. Arefeva, A. A. Slavnov, L. D. Faddeev, “Proizvodyaschii funktsional dlya $S$-matritsy v kalibrovochno-invariantnykh teoriyakh”, TMF, 21:3 (1974), 311–321 | DOI

[4] L. F. Abbott, “The background field method beyond one loop”, Nucl. Phys. B, 185:1 (1981), 189–203 | DOI | MR

[5] I. A. Batalin, G. A. Vilkovisky, “Gauge algebra and quantization”, Phys. Lett. B, 102:1 (1981), 27–31 | DOI | MR

[6] I. A. Batalin, G. A. Vilkovisky, “Quantization of gauge theories with linearly dependent generators”, Phys. Rev. D, 28:10 (1983), 2567–2582 | DOI | MR

[7] C. Becchi, A. Rouet, R. Stora, “The Abelian Higgs Kibble model, unitarity of the $S$-operator”, Phys. Lett. B, 52:3 (1974), 344–346 | DOI

[8] I. V. Tyutin, Kalibrovochnaya invariantnost v teorii polya i statisticheskoi fizike v operatornoi formulirovke, Preprint No 39, FIAN, M., 1975, arXiv: 0812.0580

[9] C. Becchi, A. Rouet, R. Stora, “Renormalization of gauge theories”, Ann. Phys. B, 98:2 (1976), 287–321 | DOI | MR

[10] A. O. Barvinsky, D. Blas, M. Herrero-Valea, S. M. Sibiryakov, C. F. Steinwachs, “Renormalization of gauge theories in the background-field approach”, JHEP, 07 (2018), 035, 42 pp., arXiv: 1705.03480 | DOI | MR

[11] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, “Multiplicative renormalization of Yang–Mills theories in the background-field formalism”, Eur. Phys. J. C, 78:7 (2018), 570, 16 pp., arXiv: 1806.02552 | DOI

[12] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, “Gauge dependence and multiplicative renormalization of Yang–Mills theory with matter fields”, Eur. Phys. J. C, 79:7 (2019), 628, 17 pp. | DOI

[13] H. Kluberg-Stern, J. B. Zuber, “Renormalization of non-Abelian gauge theories in a background-field gauge. I. Green's functions”, Phys. Rev. D, 12:2 (1975), 482–488 | DOI

[14] O. Piguet, K. Sibold, “Gauge independence in ordinary Yang–Mills theories”, Nucl. Phys. B, 253 (1985), 517–540 | DOI

[15] B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York, 1965 | MR