Mots-clés : BV formalism.
@article{TMF_2020_202_1_a3,
author = {I. A. Batalin and K. Bering and P. M. Lavrov and I. V. Tyutin},
title = {Multiplicative renormalizability of {Yang{\textendash}Mills} theory with the~background field method in {the~BV} formalism},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {34--46},
year = {2020},
volume = {202},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a3/}
}
TY - JOUR AU - I. A. Batalin AU - K. Bering AU - P. M. Lavrov AU - I. V. Tyutin TI - Multiplicative renormalizability of Yang–Mills theory with the background field method in the BV formalism JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 34 EP - 46 VL - 202 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a3/ LA - ru ID - TMF_2020_202_1_a3 ER -
%0 Journal Article %A I. A. Batalin %A K. Bering %A P. M. Lavrov %A I. V. Tyutin %T Multiplicative renormalizability of Yang–Mills theory with the background field method in the BV formalism %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 34-46 %V 202 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a3/ %G ru %F TMF_2020_202_1_a3
I. A. Batalin; K. Bering; P. M. Lavrov; I. V. Tyutin. Multiplicative renormalizability of Yang–Mills theory with the background field method in the BV formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 34-46. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a3/
[1] C. N. Yang, R. L. Mills, “Considerations of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96:1 (1954), 191–195 | DOI | MR
[2] B. S. DeWitt, “Quantum theory of gravity. II. The manifestly covariant theory”, Phys. Rev., 162:5 (1967), 1195–1239 | DOI
[3] I. Ya. Arefeva, A. A. Slavnov, L. D. Faddeev, “Proizvodyaschii funktsional dlya $S$-matritsy v kalibrovochno-invariantnykh teoriyakh”, TMF, 21:3 (1974), 311–321 | DOI
[4] L. F. Abbott, “The background field method beyond one loop”, Nucl. Phys. B, 185:1 (1981), 189–203 | DOI | MR
[5] I. A. Batalin, G. A. Vilkovisky, “Gauge algebra and quantization”, Phys. Lett. B, 102:1 (1981), 27–31 | DOI | MR
[6] I. A. Batalin, G. A. Vilkovisky, “Quantization of gauge theories with linearly dependent generators”, Phys. Rev. D, 28:10 (1983), 2567–2582 | DOI | MR
[7] C. Becchi, A. Rouet, R. Stora, “The Abelian Higgs Kibble model, unitarity of the $S$-operator”, Phys. Lett. B, 52:3 (1974), 344–346 | DOI
[8] I. V. Tyutin, Kalibrovochnaya invariantnost v teorii polya i statisticheskoi fizike v operatornoi formulirovke, Preprint No 39, FIAN, M., 1975, arXiv: 0812.0580
[9] C. Becchi, A. Rouet, R. Stora, “Renormalization of gauge theories”, Ann. Phys. B, 98:2 (1976), 287–321 | DOI | MR
[10] A. O. Barvinsky, D. Blas, M. Herrero-Valea, S. M. Sibiryakov, C. F. Steinwachs, “Renormalization of gauge theories in the background-field approach”, JHEP, 07 (2018), 035, 42 pp., arXiv: 1705.03480 | DOI | MR
[11] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, “Multiplicative renormalization of Yang–Mills theories in the background-field formalism”, Eur. Phys. J. C, 78:7 (2018), 570, 16 pp., arXiv: 1806.02552 | DOI
[12] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, “Gauge dependence and multiplicative renormalization of Yang–Mills theory with matter fields”, Eur. Phys. J. C, 79:7 (2019), 628, 17 pp. | DOI
[13] H. Kluberg-Stern, J. B. Zuber, “Renormalization of non-Abelian gauge theories in a background-field gauge. I. Green's functions”, Phys. Rev. D, 12:2 (1975), 482–488 | DOI
[14] O. Piguet, K. Sibold, “Gauge independence in ordinary Yang–Mills theories”, Nucl. Phys. B, 253 (1985), 517–540 | DOI
[15] B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York, 1965 | MR