@article{TMF_2020_202_1_a2,
author = {A. D. Alhaidari},
title = {Series solution of a~ten-parameter second-order differential equation with three regular singularities and one irregular singularity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {20--33},
year = {2020},
volume = {202},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a2/}
}
TY - JOUR AU - A. D. Alhaidari TI - Series solution of a ten-parameter second-order differential equation with three regular singularities and one irregular singularity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 20 EP - 33 VL - 202 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a2/ LA - ru ID - TMF_2020_202_1_a2 ER -
%0 Journal Article %A A. D. Alhaidari %T Series solution of a ten-parameter second-order differential equation with three regular singularities and one irregular singularity %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 20-33 %V 202 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a2/ %G ru %F TMF_2020_202_1_a2
A. D. Alhaidari. Series solution of a ten-parameter second-order differential equation with three regular singularities and one irregular singularity. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 20-33. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a2/
[1] A. D. Alhaidari, “Series solutions of Laguerre- and Jacobi-type differential equations in terms of orthogonal polynomials and physical applications”, J. Math. Phys., 59:6 (2018), 063508, 22 pp., arXiv: 1802.09708 | DOI | MR
[2] A. D. Alhaidari, “Solution of the nonrelativistic wave equation using the tridiagonal representation approach”, J. Math. Phys., 58:7 (2017), 072104, 37 pp., arXiv: 1703.01268 | DOI | MR
[3] E. J. Heller, H. A. Yamani, “New $L^2$ approach to quantum scattering: Theory”, Phys. Rev. A, 9:3 (1974), 1201–1208 | DOI
[4] E. J. Heller, H. A. Yamani, “$J$-matrix method: Application to $S$-wave electron-hydrogen scattering”, Phys. Rev. A, 9:3 (1974), 1209–1214 | DOI
[5] H. A. Yamani, W. P. Reinhardt, “$L^2$ discretizations of the continuum: Radial kinetic energy and Coulomb Hamiltonian”, Phys. Rev. A, 11:4 (1975), 1144–1156 | DOI | MR
[6] H. A. Yamani, L. Fishman, “$J$-matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering”, J. Math. Phys., 16 (1975), 410–420 | DOI
[7] M. E. H. Ismail, E. Koelink, “The $J$-matrix method”, Adv. Appl. Math., 46:1–4 (2011), 379–395 | DOI | MR
[8] M. E. H. Ismail, E. Koelink, “Spectral properties of operators using tridiagonalization”, Anal. Appl. (Singap.), 10:3 (2012), 327–343 | DOI | MR
[9] M. E. H. Ismail, E. Koelink, “Spectral analysis of certain Schrödinger operators”, SIGMA, 8 (2012), 061, 19 pp. | DOI | MR
[10] V. X. Genest, M. E. H. Ismail, L. Vinet, A. Zhedanov, “Tridiagonalization of the hypergeometric operator and the Racah–Wilson algebra”, Proc. AMS, 144:10 (2016), 4441–4454 | DOI | MR
[11] A. D. Alhaidari, “Series solutions of Heun-type equation in terms of orthogonal polynomials”, J. Math. Phys., 59:11 (2018), 113507, 12 pp. | DOI | MR
[12] K. Heun, “Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten”, Math. Ann., 33:2 (1889), 161–179 | DOI | MR
[13] A. Ronveaux (ed.), Heun's Differential Equations, Oxford Univ. Press, New York, 1995 | MR | Zbl
[14] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002 | MR | Zbl
[15] A. D. Alhaidari, M. E. H. Ismail, “Quantum mechanics without potential function”, J. Math. Phys., 56:7 (2015), 072107, 19 pp., arXiv: 1408.4003 | DOI | MR
[16] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 3, Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR | Zbl
[17] G. Szegő, Orthogonal Polynomials, American Mathematical Society, Colloquium Publications, XXIII, AMS, Providence, RI, 1975 | MR
[18] T. S. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and its Applications, 13, Gordon and Breach, New York, 1978 | MR
[19] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge Univ. Press, Cambridge, 2009 | MR
[20] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer, Berlin, 2010 | MR
[21] W. Van Assche, “Compact Jacobi matrices: from Stieltjes to Krein and $M(a;b)$”, Ann. Fac. Sci. Toulouse Math., Ser. 6, S5 (1996), 195–215 | MR | Zbl
[22] P. Moon, D. E. Spencer, Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions, Springer, Berlin, 1988 | MR