Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 143-154
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Both conservative and nonconservative systems can be studied simultaneously using the differential variational principle of Herglotz type. For a perturbed system, in which parameters change with time, it is useful to find adiabatic invariants. Based on the Herglotz differential variational principle, we study the perturbation of infinitesimal transformations and adiabatic invariants for perturbed nonconservative Lagrangian systems. From the generalized Euler–Lagrange equation and the invariance condition for the Hamilton–Herglotz action under the group of infinitesimal transformations, we obtain an exact invariant of Herglotz type for a holonomic nonconservative system. We propose a definition of higher-order adiabatic invariants of Herglotz type and obtain such adiabatic invariants for nonconservative Lagrangian systems with small perturbations. We prove the corresponding inverse theorem of adiabatic invariants. As examples of using the obtained results, we consider an oscillator with square damping and a system with two degrees of freedom.
Keywords: perturbed system, Herglotz differential variational principle, nonconservative Lagrangian system.
Mots-clés : adiabatic invariant
@article{TMF_2020_202_1_a10,
     author = {Xue Tian and Yi Zhang},
     title = {Adiabatic invariants of {Herglotz} type for perturbed nonconservative {Lagrangian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {143--154},
     year = {2020},
     volume = {202},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a10/}
}
TY  - JOUR
AU  - Xue Tian
AU  - Yi Zhang
TI  - Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 143
EP  - 154
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a10/
LA  - ru
ID  - TMF_2020_202_1_a10
ER  - 
%0 Journal Article
%A Xue Tian
%A Yi Zhang
%T Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 143-154
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a10/
%G ru
%F TMF_2020_202_1_a10
Xue Tian; Yi Zhang. Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 143-154. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a10/

[1] G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930

[2] R. B. Guenther, C. M. Guenther, J. A. Gottsch, The Herglotz Lectures on Contact Transformations and Hamiltonian Systems, Lecture Notes in Nonlinear Analysis, 1, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Toruń, 1996 | MR | Zbl

[3] B. Georgieva, R. Guenther, “First Noether-type theorem for the generalized variational principle of Herglotz”, Topol. Methods Nonlinear Anal., 20:2 (2002), 261–273 | DOI | MR

[4] R. Mrugała, “Contact transformations and brackets in classical thermodynamics”, Acta Phys. Polon. A, 58:1 (1980), 19–29 | MR

[5] K. Furta, A. Sano, D. Atherton, State Variable Methods in Automatic Control, John Wiley, New York, 1988

[6] S. P. S. Santos, N. Martins, D. F. M. Torres, “An optimal control approach to Herglotz variational problems”, Optimization in the Natural Sciences, 30th Euro Mini-Conference, EmC-ONS 2014 (Aveiro, Portugal, February 5–9, 2014), Communications in Computer and Information Science, 499, eds. A. Plakhov, T. Tchemisova, A. Freitas, Springer, Cham, 2015, 107–117 | DOI

[7] B. Georgieva, R. Guenther, T. Bodurov, “Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem”, J. Math. Phys., 44:9 (2003), 3911–3927 | DOI | MR

[8] S. P. S. Santos, N. Martins, D. F. M. Torres, “Variational problems of Herglotz type with time delay: DuBois–Reymond condition and Noether's first theorem”, Discrete Contin. Dyn. Syst., 35:9 (2015), 4593–4610 | DOI | MR

[9] S. P. S. Santos, N. Martins, D. F. M. Torres, “Noether currents for higher-order variational problems of Herglotz type with time delay”, Discrete Contin. Dyn. Syst., 11:1 (2018), 91–102 | DOI | MR

[10] Y. Zhang, “Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether's theorem”, Chin. J. Theor. Appl. Mech., 48:6 (2016), 1382–1389

[11] Y. Zhang, “Variational problem of Herglotz type for Birkhoffian system and its Noether's theorems”, Acta Mech., 228:4 (2017), 1481–1492 | DOI | MR

[12] Y. Zhang, “Noether's theorem for a time-delayed Birkhoffian system of Herglotz type”, Internat. J. Nonlinear Mech., 101 (2018), 36–43 | DOI

[13] X. Tian, Y. Zhang, “Noether's theorem and its inverse of Birkhoffian system in event space based on Herglotz variational problem”, Internat. J. Theor. Phys., 57:3 (2018), 887–897 | DOI | MR

[14] X. Tian, Y. Zhang, “Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales”, Acta Mech., 229:9 (2018), 3601–3611 | DOI | MR

[15] X. Tian, Y. Zhang, “Noether symmetry and conserved quantities of fractional Birkhoffian system in terms of Herglotz variational problem”, Commun. Theor. Phys., 70:3 (2018), 280–288 | DOI | MR

[16] Y. Y. Zhao, F. X. Mei, Symmetries and Invariants of Mechanical Systems, Science Press, Beijing, 1999

[17] Y. Zhang, X. Tian, “Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem”, Phys. Lett. A, 383:8 (2019), 691–696 | DOI | MR

[18] V. N. Likhachev, Yu. S. Tyupkin, A. S. Shvarts, “Adiabaticheskaya teorema v kvantovoi teorii polya”, TMF, 10:1 (1972), 63–84 | DOI | MR

[19] A. L. Kitanin, “O nestatsionarnoi teorii vozmuschenii dlya vyrozhdennogo diskretnogo urovnya”, TMF, 25:3 (1975), 414–418 | DOI | MR | Zbl

[20] M. Kruskal, “Asymptotic theory of Hamiltonian and other system with all solutions nearly periodic”, J. Math. Phys., 3:4 (1962), 806–828 | DOI | MR

[21] D. S. Djukic, “Adiabatic invariants for dynamical systems with one degree of freedom”, Internat. J. Nonlinear Mech., 16:5–6 (1981), 489–498 | DOI

[22] S. V. Bulanov, S. G. Shasharina, “Behaviour of adiabatic invariant near the separatrix in a stellarator”, Nucl. Fusion, 32:9 (1992), 1531–1543 | DOI

[23] J. Notte, J. Fajans, R. Chu, J. S. Wurtele, “Experimental breaking of an adiabatic invariant”, Phys. Rev. Lett., 70:25 (1993), 3900–3903 | DOI

[24] X.-W. Chen, Y.-M. Li, Y.-H. Zhao, “Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system”, Phys. Lett. A, 337:4–6 (2005), 274–278 | DOI | MR

[25] P. Wang, J.-H. Fang, N. Ding, X.-N. Zhang, “Hojman exact invariants and adiabatic invariants of Hamilton system”, Commun. Theor. Phys., 48:6 (2007), 996–998 | MR

[26] L.-L. Xia, Y.-C. Li, “Perturbation to symmetries and Hojman adiabatic invariants for nonholonomic controllable mechanical systems with non-Chetaev type constraints”, Chinese Phys. B, 16:6 (2007), 1516–1520 | DOI

[27] M. V. Libanov, V. A. Rubakov, “Kosmologicheskie vozmuscheniya plotnosti v teorii konformnogo skalyarnogo polya”, TMF, 170:2 (2012), 188–205 | DOI | DOI | MR

[28] J. M. Burgers, “Die adiabatischen Invarianten bedingt periodischer Systeme”, Ann. Phys. (Berlin), 357:2 (1917), 195–202 | DOI