Mots-clés : adiabatic invariant
@article{TMF_2020_202_1_a10,
author = {Xue Tian and Yi Zhang},
title = {Adiabatic invariants of {Herglotz} type for perturbed nonconservative {Lagrangian} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {143--154},
year = {2020},
volume = {202},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a10/}
}
TY - JOUR AU - Xue Tian AU - Yi Zhang TI - Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 143 EP - 154 VL - 202 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a10/ LA - ru ID - TMF_2020_202_1_a10 ER -
Xue Tian; Yi Zhang. Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 143-154. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a10/
[1] G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930
[2] R. B. Guenther, C. M. Guenther, J. A. Gottsch, The Herglotz Lectures on Contact Transformations and Hamiltonian Systems, Lecture Notes in Nonlinear Analysis, 1, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Toruń, 1996 | MR | Zbl
[3] B. Georgieva, R. Guenther, “First Noether-type theorem for the generalized variational principle of Herglotz”, Topol. Methods Nonlinear Anal., 20:2 (2002), 261–273 | DOI | MR
[4] R. Mrugała, “Contact transformations and brackets in classical thermodynamics”, Acta Phys. Polon. A, 58:1 (1980), 19–29 | MR
[5] K. Furta, A. Sano, D. Atherton, State Variable Methods in Automatic Control, John Wiley, New York, 1988
[6] S. P. S. Santos, N. Martins, D. F. M. Torres, “An optimal control approach to Herglotz variational problems”, Optimization in the Natural Sciences, 30th Euro Mini-Conference, EmC-ONS 2014 (Aveiro, Portugal, February 5–9, 2014), Communications in Computer and Information Science, 499, eds. A. Plakhov, T. Tchemisova, A. Freitas, Springer, Cham, 2015, 107–117 | DOI
[7] B. Georgieva, R. Guenther, T. Bodurov, “Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem”, J. Math. Phys., 44:9 (2003), 3911–3927 | DOI | MR
[8] S. P. S. Santos, N. Martins, D. F. M. Torres, “Variational problems of Herglotz type with time delay: DuBois–Reymond condition and Noether's first theorem”, Discrete Contin. Dyn. Syst., 35:9 (2015), 4593–4610 | DOI | MR
[9] S. P. S. Santos, N. Martins, D. F. M. Torres, “Noether currents for higher-order variational problems of Herglotz type with time delay”, Discrete Contin. Dyn. Syst., 11:1 (2018), 91–102 | DOI | MR
[10] Y. Zhang, “Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether's theorem”, Chin. J. Theor. Appl. Mech., 48:6 (2016), 1382–1389
[11] Y. Zhang, “Variational problem of Herglotz type for Birkhoffian system and its Noether's theorems”, Acta Mech., 228:4 (2017), 1481–1492 | DOI | MR
[12] Y. Zhang, “Noether's theorem for a time-delayed Birkhoffian system of Herglotz type”, Internat. J. Nonlinear Mech., 101 (2018), 36–43 | DOI
[13] X. Tian, Y. Zhang, “Noether's theorem and its inverse of Birkhoffian system in event space based on Herglotz variational problem”, Internat. J. Theor. Phys., 57:3 (2018), 887–897 | DOI | MR
[14] X. Tian, Y. Zhang, “Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales”, Acta Mech., 229:9 (2018), 3601–3611 | DOI | MR
[15] X. Tian, Y. Zhang, “Noether symmetry and conserved quantities of fractional Birkhoffian system in terms of Herglotz variational problem”, Commun. Theor. Phys., 70:3 (2018), 280–288 | DOI | MR
[16] Y. Y. Zhao, F. X. Mei, Symmetries and Invariants of Mechanical Systems, Science Press, Beijing, 1999
[17] Y. Zhang, X. Tian, “Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem”, Phys. Lett. A, 383:8 (2019), 691–696 | DOI | MR
[18] V. N. Likhachev, Yu. S. Tyupkin, A. S. Shvarts, “Adiabaticheskaya teorema v kvantovoi teorii polya”, TMF, 10:1 (1972), 63–84 | DOI | MR
[19] A. L. Kitanin, “O nestatsionarnoi teorii vozmuschenii dlya vyrozhdennogo diskretnogo urovnya”, TMF, 25:3 (1975), 414–418 | DOI | MR | Zbl
[20] M. Kruskal, “Asymptotic theory of Hamiltonian and other system with all solutions nearly periodic”, J. Math. Phys., 3:4 (1962), 806–828 | DOI | MR
[21] D. S. Djukic, “Adiabatic invariants for dynamical systems with one degree of freedom”, Internat. J. Nonlinear Mech., 16:5–6 (1981), 489–498 | DOI
[22] S. V. Bulanov, S. G. Shasharina, “Behaviour of adiabatic invariant near the separatrix in a stellarator”, Nucl. Fusion, 32:9 (1992), 1531–1543 | DOI
[23] J. Notte, J. Fajans, R. Chu, J. S. Wurtele, “Experimental breaking of an adiabatic invariant”, Phys. Rev. Lett., 70:25 (1993), 3900–3903 | DOI
[24] X.-W. Chen, Y.-M. Li, Y.-H. Zhao, “Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system”, Phys. Lett. A, 337:4–6 (2005), 274–278 | DOI | MR
[25] P. Wang, J.-H. Fang, N. Ding, X.-N. Zhang, “Hojman exact invariants and adiabatic invariants of Hamilton system”, Commun. Theor. Phys., 48:6 (2007), 996–998 | MR
[26] L.-L. Xia, Y.-C. Li, “Perturbation to symmetries and Hojman adiabatic invariants for nonholonomic controllable mechanical systems with non-Chetaev type constraints”, Chinese Phys. B, 16:6 (2007), 1516–1520 | DOI
[27] M. V. Libanov, V. A. Rubakov, “Kosmologicheskie vozmuscheniya plotnosti v teorii konformnogo skalyarnogo polya”, TMF, 170:2 (2012), 188–205 | DOI | DOI | MR
[28] J. M. Burgers, “Die adiabatischen Invarianten bedingt periodischer Systeme”, Ann. Phys. (Berlin), 357:2 (1917), 195–202 | DOI